Wertheim's “reference” signal: Successful in explaining perception of absolute motion, but how about relative motion?

1994 ◽  
Vol 17 (2) ◽  
pp. 323-324
Author(s):  
S. Mateeff ◽  
J. Hohnsbein
Author(s):  
Robert Rynasiewicz

In the Scholium to the Definitions at the beginning of the Principia, Newton distinguishes absolute time, space, place, and motion from their relative counterparts. He argues that they are indeed ontologically distinct, in that the absolute quantity cannot be reduced to some particular category of the relative, as Descartes had attempted by defining absolute motion to be relative motion with respect to immediately ambient bodies. Newton’s rotating bucket experiment, rather than attempting to show that absolute motion exists, is one of five arguments from the properties, causes, and effects of motion. These arguments attempt to show that no such program can succeed, and thus that true motion can be adequately analyzed only by invoking immovable places, that is, the parts of absolute space.


Author(s):  
Alexander Pastukhov ◽  
Lisa Koßmann ◽  
Claus-Christian Carbon

AbstractWhen several multistable displays are viewed simultaneously, their perception is synchronized, as they tend to be in the same perceptual state. Here, we investigated the possibility that perception may reflect embedded statistical knowledge of physical interaction between objects for specific combinations of displays and layouts. We used a novel display with two ambiguously rotating gears and an ambiguous walker-on-a-ball display. Both stimuli produce a physically congruent perception when an interaction is possible (i.e., gears counterrotate, and the ball rolls under the walker’s feet). Next, we gradually manipulated the stimuli to either introduce abrupt changes to the potential physical interaction between objects or keep it constant despite changes in the visual stimulus. We characterized the data using four different models that assumed (1) independence of perception of the stimulus, (2) dependence on the stimulus’s properties, (3) dependence on physical configuration alone, and (4) an interaction between stimulus properties and a physical configuration. We observed that for the ambiguous gears, the perception was correlated with the stimulus changes rather than with the possibility of physical interaction. The perception of walker-on-a-ball was independent of the stimulus but depended instead on whether participants responded about a relative motion of two objects (perception was biased towards physically congruent motion) or the absolute motion of the walker alone (perception was independent of the rotation of the ball). None of the two experiments supported the idea of embedded knowledge of physical interaction.


2001 ◽  
Vol 24 (2) ◽  
pp. 245-246 ◽  
Author(s):  
A. H. Wertheim

Various annoyingly incorrect statements of Stoffregen & Bardy are corrected, for example, that perception researchers commonly use the term “absolute motion” to denote motion without any frame of reference, confuse earth-relative and gravity-relative motion, err with respect to the frame of reference implied by their subject is motion responses, believe in sense specific motion percepts, and do not investigate sensory interactions at neurophysiological levels. In addition, much of the target article seems to concern metaphysics rather than empirical science.


2015 ◽  
pp. 107-114
Author(s):  
Henri Poincare ◽  
George Bruce Halsted ◽  
Josiah Royce

1974 ◽  
Vol 26 (3) ◽  
pp. 425-437 ◽  
Author(s):  
Walter C. Gogel

The perception of motion of physically moving points of light was investigated in terms of the distinction between absolute and relative motion cues and the change in the effectiveness of the latter as a function of the frontoparallel separation between the points. In situations in which two competing relative motion cues were available to determine the perceived path of motion of a point of light, it was found that the relative motion cue between more adjacent points was more effective than the relative motion cue between more separated points. In situations in which only one relative motion cue was available to determine the perceived motion of a point it was found that the effectiveness of this cue as compared with the absolute motion cue decreased with increased separation. These results are predictable from the adjacency principle which states that the effectiveness of cues between objects is an inverse function of object separation. Some consequences of the study for the theory of motion perception are discussed.


Author(s):  
Bridget Carragher ◽  
David A. Bluemke ◽  
Michael J. Potel ◽  
Robert Josephs

We have investigated the feasibility of restoring blurred electron micrographs. Two related problems have been considered; the restoration of images blurred as a result of relative motion between the specimen and the image plane, and the restoration of images which are rotationally blurred about an axis. Micrographs taken while the specimen is drifting result in images which are blurred in the direction of motion. An example of rotational blurring arises in micrographs of thin sections of helical particles viewed in cross section. The twist of the particle within the finite thickness of the section causes the image to appear rotationally blurred about the helical axis. As a result, structural details, particularly at large distances from the helical axis, will be obscured.


Author(s):  
Akitoshi ITAI ◽  
Arao FUNASE ◽  
Andrzej CICHOCKI ◽  
Hiroshi YASUKAWA

Sign in / Sign up

Export Citation Format

Share Document