Attention, saccade programming, and the timing of eye-movement control

2003 ◽  
Vol 26 (4) ◽  
pp. 497-498 ◽  
Author(s):  
Ralph Radach ◽  
Heiner Deubel ◽  
Dieter Heller

E-Z Reader achieves an impressive fit of empirical eye movement data by simulating core processes of reading in a computational approach that includes serial word processing, shifts of attention, and temporal overlap in the programming of saccades. However, when common assumptions for the time requirements of these processes are taken into account, severe constraints on the time line within which these elements can be combined become obvious. We argue that it appears difficult to accommodate these processes within a largely sequential modeling framework such as E-Z Reader.

2003 ◽  
Vol 26 (4) ◽  
pp. 487-488 ◽  
Author(s):  
Lynn Huestegge ◽  
Jonathan Grainger ◽  
Ralph Radach

A central component in the E-Z Reader model is a two-stage word processing mechanism made responsible for both the triggering of eye movements and sequential shifts of attention. We point to problems with both the verbal description of this mechanism and its computational implementation in the simulation. As an alternative, we consider the use of a connectionist processing module in combination with a more indirect form of cognitive eye-movement control.


2022 ◽  
Author(s):  
Anke Cajar ◽  
Ralf Engbert ◽  
Jochen Laubrock

The availability of large eye-movement corpora has become increasingly important over the past years. In scene viewing, scan-path analyses of time-ordered fixations, for example, allow for investigating individual differences in spatial correlations between fixation locations, or for predicting individual viewing behavior in the context of computational models. However, time-dependent analyses require many fixations per scene, and only few large eye-movement corpora are publicly available. This manuscript presents a new corpus with eye-movement data from two hundred participants. Viewers memorized or searched either color or grayscale scenes while high or low spatial frequencies were filtered in central or peripheral vision. Our database provides the scenes from the experiment with corresponding object annotations, preprocessed eye-movement data, and heatmaps and fixation clusters based on empirical fixation locations. Besides time-dependent analyses, the corpus data allow for investigating questions that have received little attention in scene-viewing research so far: (i) eye-movement behavior under different task instructions, (ii) the importance of color and spatial frequencies when performing these tasks, and (iii) the individual roles and interaction of central and peripheral vision during scene viewing. Furthermore, the corpus allows for validation of computational models of attention and eye-movement control, and finally, analyses on an object- or cluster-based level.


2019 ◽  
Vol 24 (4) ◽  
pp. 297-311
Author(s):  
José David Moreno ◽  
José A. León ◽  
Lorena A. M. Arnal ◽  
Juan Botella

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young ( Mage = 21 years) and old ( Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.


2014 ◽  
Author(s):  
Bernhard Angele ◽  
Elizabeth R. Schotter ◽  
Timothy Slattery ◽  
Tara L. Chaloukian ◽  
Klinton Bicknell ◽  
...  

2001 ◽  
Author(s):  
Erik D. Reichle ◽  
Lesley A. Hart ◽  
Charles A. Perfetti

2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


Author(s):  
Ayush Kumar ◽  
Prantik Howlader ◽  
Rafael Garcia ◽  
Daniel Weiskopf ◽  
Klaus Mueller

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


Sign in / Sign up

Export Citation Format

Share Document