Entropy pairs for a measure

1995 ◽  
Vol 15 (4) ◽  
pp. 621-632 ◽  
Author(s):  
F. Blanchard ◽  
B. Host ◽  
A. Maass ◽  
S. Martinez ◽  
D. J. Rudolph

AbstractWe define entropy pairs for an invariant measure µ on a topological dynamical system (X, T), and show they allow one to construct the maximal topological factorwith entropy 0 for µ. Then we prove that for any µ, a µ-entropy pair is always topologically so, and the reverse is true when (X, T) is uniquely ergodic.

2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


2017 ◽  
Vol 39 (06) ◽  
pp. 1608-1636 ◽  
Author(s):  
FELIPE GARCÍA-RAMOS ◽  
JIE LI ◽  
RUIFENG ZHANG

This article is devoted to studying which conditions imply that a topological dynamical system is mean sensitive and which do not. Among other things, we show that every uniquely ergodic, mixing system with positive entropy is mean sensitive. On the other hand, we provide an example of a transitive system which is cofinitely sensitive or Devaney chaotic with positive entropy but fails to be mean sensitive. As applications of our theory and examples, we negatively answer an open question regarding equicontinuity/sensitivity dichotomies raised by Tu, we introduce and present results of locally mean equicontinuous systems and we show that mean sensitivity of the induced hyperspace does not imply that of the phase space.


2019 ◽  
Vol 41 (2) ◽  
pp. 494-533 ◽  
Author(s):  
WEN HUANG ◽  
JIAN LI ◽  
JEAN-PAUL THOUVENOT ◽  
LEIYE XU ◽  
XIANGDONG YE

We study dynamical systems that have bounded complexity with respect to three kinds metrics: the Bowen metric $d_{n}$, the max-mean metric $\hat{d}_{n}$ and the mean metric $\bar{d}_{n}$, both in topological dynamics and ergodic theory. It is shown that a topological dynamical system $(X,T)$ has bounded complexity with respect to $d_{n}$ (respectively $\hat{d}_{n}$) if and only if it is equicontinuous (respectively equicontinuous in the mean). However, we construct minimal systems that have bounded complexity with respect to $\bar{d}_{n}$ but that are not equicontinuous in the mean. It turns out that an invariant measure $\unicode[STIX]{x1D707}$ on $(X,T)$ has bounded complexity with respect to $d_{n}$ if and only if $(X,T)$ is $\unicode[STIX]{x1D707}$-equicontinuous. Meanwhile, it is shown that $\unicode[STIX]{x1D707}$ has bounded complexity with respect to $\hat{d}_{n}$ if and only if $\unicode[STIX]{x1D707}$ has bounded complexity with respect to $\bar{d}_{n}$, if and only if $(X,T)$ is $\unicode[STIX]{x1D707}$-mean equicontinuous and if and only if it has discrete spectrum.


1997 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
F. BLANCHARD ◽  
E. GLASNER ◽  
B. HOST

The variational principle states that the topological entropy of a topological dynamical system is equal to the sup of the entropies of invariant measures. It is proved that for any finite open cover there is an invariant measure such that the topological entropy of this cover is less than or equal to the entropies of all finer partitions. One consequence of this result is that for any dynamical system with positive topological entropy there exists an invariant measure whose set of entropy pairs is equal to the set of topological entropy pairs.


2018 ◽  
Vol 40 (4) ◽  
pp. 953-974 ◽  
Author(s):  
WEN HUANG ◽  
LEIYE XU ◽  
XIANGDONG YE

In this paper the notion of sub-exponential measure complexity for an invariant Borel probability measure of a topological dynamical system is introduced. Then a minimal distal skew product map on the torus with sub-exponential measure complexity is constructed.


2000 ◽  
Vol 10 (05) ◽  
pp. 1033-1050 ◽  
Author(s):  
ERIK M. BOLLT

The inverse Frobenius–Perron problem (IFPP) is a global open-loop strategy to control chaos. The goal of our IFPP is to design a dynamical system in ℜn which is: (1) nearby the original dynamical system, and (2) has a desired invariant density. We reduce the question of stabilizing an arbitrary invariant measure, to the question of a hyperplane intersecting a unit hyperbox; several controllability theorems follow. We present a generalization of Baker maps with an arbitrary grammar and whose FP operator is the required stochastic matrix.


2016 ◽  
Vol 37 (7) ◽  
pp. 2223-2254 ◽  
Author(s):  
JIE LI ◽  
PIOTR OPROCHA ◽  
XIANGDONG YE ◽  
RUIFENG ZHANG

In the paper we study relations of rigidity, equicontinuity and pointwise recurrence between an invertible topological dynamical system (t.d.s.) $(X,T)$ and the t.d.s. $(K(X),T_{K})$ induced on the hyperspace $K(X)$ of all compact subsets of $X$, and provide some characterizations. Among other examples, we construct a minimal, non-equicontinuous, distal and uniformly rigid t.d.s. and a weakly mixing t.d.s. which induces dense periodic points on the hyperspace $K(X)$ but itself does not have dense distal points, solving in that way a few open questions from earlier articles by Dong, and Li, Yan and Ye.


2009 ◽  
Vol 29 (4) ◽  
pp. 1119-1140 ◽  
Author(s):  
KARMA DAJANI ◽  
YUSUF HARTONO ◽  
COR KRAAIKAMP

AbstractLet 0<α<1 andβ>1. We show that everyx∈[0,1] has an expansion of the formwherehi=hi(x)∈{0,α/β}, andpi=pi(x)∈{0,1}. We study the dynamical system underlying this expansion and give the density of the invariant measure that is equivalent to the Lebesgue measure. We prove that the system is weakly Bernoulli, and we give a version of the natural extension. For special values ofα, we give the relationship of this expansion with the greedyβ-expansion.


2014 ◽  
Vol 35 (5) ◽  
pp. 1423-1442 ◽  
Author(s):  
ZHIJING CHEN ◽  
JIAN LI ◽  
JIE LÜ

Let $(X,f)$ be a topological dynamical system and ${\mathcal{F}}$ be a Furstenberg family (a collection of subsets of $\mathbb{N}$ with hereditary upward property). A point $x\in X$ is called an ${\mathcal{F}}$-transitive point if for every non-empty open subset $U$ of $X$ the entering time set of $x$ into $U$, $\{n\in \mathbb{N}:f^{n}(x)\in U\}$, is in ${\mathcal{F}}$; the system $(X,f)$ is called ${\mathcal{F}}$-point transitive if there exists some ${\mathcal{F}}$-transitive point. In this paper, we first discuss the connection between ${\mathcal{F}}$-point transitivity and ${\mathcal{F}}$-transitivity, and show that weakly mixing and strongly mixing systems can be characterized by ${\mathcal{F}}$-point transitivity, completing results in [Transitive points via Furstenberg family. Topology Appl. 158 (2011), 2221–2231]. We also show that multi-transitivity, ${\rm\Delta}$-transitivity and multi-minimality can be characterized by ${\mathcal{F}}$-point transitivity, answering two questions proposed by Kwietniak and Oprocha [On weak mixing, minimality and weak disjointness of all iterates. Ergod. Th. & Dynam. Sys. 32 (2012), 1661–1672].


Sign in / Sign up

Export Citation Format

Share Document