scholarly journals A modified algorithm for Cleaning wide-field maps with extended structures

1991 ◽  
Vol 131 ◽  
pp. 242-242
Author(s):  
K. S. Dwarakanath ◽  
A. A. Deshpande ◽  
N. Udaya Shankar

AbstractA simple but effective modification to the conventional CLEAN algorithm is suggested. This modification ensures both stability and speed when CLEAN is applied to maps containing a mixture of point sources and extended structures. The method has been successfully applied to the recently-completed sky survey at 34.5 MHz. This survey was made using the Gauribidanur T array (GEETEE) in 1-D aperture synthesis mode. Since in this case the ‘dirty beam’ (point spread function) cannot be directly computed, a method to obtain this is discussed in detail. The results of this deconvolution procedure have been encouraging in terms of reduced computing time and improved dynamic range in our maps. This algorithm should find wider application in deconvolving maps which have both extended structures and point sources.

2020 ◽  
Vol 497 (3) ◽  
pp. 4000-4008
Author(s):  
Rongyu Sun ◽  
Shengxian Yu ◽  
Peng Jia ◽  
Changyin Zhao

ABSTRACT Telescopes with a small aperture and a wide field of view are widely used and play a significant role in large-scale state-of-the-art sky survey applications, such as transient detection and near-Earth object observations. However, owing to the specific defects caused by optical aberrations, the image quality and efficiency of source detection are affected. To achieve high-accuracy position measurements, an innovative technique is proposed. First, a large number of raw images are analysed using principal component analysis. Then, the effective point spread function is reconstructed, which reflects the state of the telescope and reveals the characteristics of the imaging process. Finally, based on the point spread function model, the centroids of star images are estimated iteratively. To test the efficiency and reliability of our algorithm, a large number of simulated images are produced, and a telescope with small aperture and wide field of view is utilized to acquire the raw images. The position measurement of sources is performed using our novel method and two other common methods on these data. Based on a comparison of the results, the improvement is investigated, and it is demonstrated that our proposed technique outperforms the others on position accuracy. We explore the limitations and potential gains that may be achieved by applying this technique to custom systems designed specifically for wide-field astronomical applications.


2020 ◽  
Vol 641 ◽  
pp. A150 ◽  
Author(s):  
Ioannis Argyriou ◽  
Martyn Wells ◽  
Alistair Glasse ◽  
David Lee ◽  
Pierre Royer ◽  
...  

Context. As is common for infrared spectrometers, the constructive and destructive interference in different layers of the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector arrays modulate the detected signal as a function of wavelength. The resulting “fringing” in the Medium-Resolution Spectrometer (MRS) spectra varies in amplitude between 10% and 30% of the spectral baseline. A common method for correcting for fringes relies on dividing the data by a fringe flat. In the case of MIRI MRS, the fringe flat is derived from measurements of an extended, spatially homogeneous source acquired during the thermal-vacuum ground verification of the instrument. While this approach reduces fringe amplitudes of extended sources below the percent level, at the detector level, point source fringe residuals vary in a systematic way across the point spread function. The effect could hamper the scientific interpretation of MRS observations of unresolved sources, semi-extended sources, and point sources in crowded fields. Aims. We find MIRI MRS point source fringes to be reproducible under similar observing conditions. We want to investigate whether a generic and accurate correction can be determined. Therefore, we want to identify the variables, if they exist, that would allow for a parametrization of the signal variations induced by point source fringe modulations. Methods. We determine the point source fringe properties by analyzing MRS detector plane images acquired on the ground. We extracted the fringe profile of multiple point source observations and studied the amplitude and phase of the fringes as a function of field position and pixel sampling of the point spread function of the optical chain. Results. A systematic variation in the amplitude and phase of the point source fringes is found over the wavelength range covered by the test sources (4.9 − 5.8 μm). The variation depends on the fraction of the point spread function seen by the detector pixel. We identify the non-uniform pixel illumination as the root cause of the reported systematic variation. This new finding allows us to reconcile the point source and extended source fringe patterns observed in test data during ground verification. We report an improvement after correction of 50% on the 1σ standard deviation of the spectral continuum. A 50% improvement is also reported in line sensitivity for a benchmark test with a spectral continuum of 100 mJy. The improvement in the shape of weak lines is illustrated using a T Tauri model spectrum. Consequently, we verify that fringes of extended sources and potentially semi-extended sources and crowded fields can be simulated by combining multiple point source fringe transmissions. Furthermore, we discuss the applicability of this novel fringe-correction method to the MRS data (and the data of other instruments).


2020 ◽  
Vol 59 (23) ◽  
pp. 7114 ◽  
Author(s):  
Wu Qiong ◽  
Kun Gan ◽  
Zizheng Hua ◽  
Zhenzhou Zhang ◽  
Hanwen Zhao ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 451-458 ◽  
Author(s):  
Chunqi Jin ◽  
Jihua Zhang ◽  
Chunlei Guo

AbstractMetasurfaces are two-dimensional arrangements of antennas that control the propagation of electromagnetic waves with a subwavelength thickness and resolution. Previously, metasurfaces have been mostly used to obtain the function of a single optical element. Here, we demonstrate a plasmonic metasurface that represents the combination of a phase mask generating a double-helix point spread function (DH-PSF) and a metalens for imaging. DH-PSF has been widely studied in three-dimensional (3D) super-resolution imaging, biomedical imaging, and particle tracking, but the current DH-PSFs are inefficient, bulky, and difficult to integrate. The multielement metasurface, which we label as DH-metalens, enables a DH-PSF with transfer efficiency up to 70.3% and an ultrahigh level of optical system integration, three orders of magnitude smaller than those realized by conventional phase elements. Moreover, the demonstrated DH-metalens can work in broadband visible wavelengths and in multiple incident polarization states. Finally, we demonstrate the application of the DH-metalens in 3D imaging of point sources. These results pave ways for realizing integrated DH-PSFs, which have applications in 3D super-resolution microscopy, single particle tracking/imaging, and machine vision.


2020 ◽  
Vol 493 (1) ◽  
pp. 651-660 ◽  
Author(s):  
Peng Jia ◽  
Xiyu Li ◽  
Zhengyang Li ◽  
Weinan Wang ◽  
Dongmei Cai

ABSTRACT The point spread function reflects the state of an optical telescope and it is important for the design of data post-processing methods. For wide-field small-aperture telescopes, the point spread function is hard to model because it is affected by many different effects and has strong temporal and spatial variations. In this paper, we propose the use of a denoising autoencoder, a type of deep neural network, to model the point spread function of wide-field small-aperture telescopes. The denoising autoencoder is a point spread function modelling method, based on pure data, which uses calibration data from real observations or numerical simulated results as point spread function templates. According to real observation conditions, different levels of random noise or aberrations are added to point spread function templates, making them realizations of the point spread function (i.e. simulated star images). Then we train the denoising autoencoder with realizations and templates of the point spread function. After training, the denoising autoencoder learns the manifold space of the point spread function and it can map any star images obtained by wide-field small-aperture telescopes directly to its point spread function. This could be used to design data post-processing or optical system alignment methods.


Sign in / Sign up

Export Citation Format

Share Document