denoising autoencoder
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 218)

H-INDEX

20
(FIVE YEARS 10)

Author(s):  
Qin Ni ◽  
Zhuo Fan ◽  
Lei Zhang ◽  
Bo Zhang ◽  
Xiaochen Zheng ◽  
...  

AbstractHuman activity recognition (HAR) has received more and more attention, which is able to play an important role in many fields, such as healthcare and intelligent home. Thus, we have discussed an application of activity recognition in the healthcare field in this paper. Essential tremor (ET) is a common neurological disorder that can make people with this disease rise involuntary tremor. Nowadays, the disease is easy to be misdiagnosed as other diseases. We have combined the essential tremor and activity recognition to recognize ET patients’ activities and evaluate the degree of ET for providing an auxiliary analysis toward disease diagnosis by utilizing stacked denoising autoencoder (SDAE) model. Meanwhile, it is difficult for model to learn enough useful features due to the small behavior dataset from ET patients. Thus, resampling techniques are proposed to alleviate small sample size and imbalanced samples problems. In our experiment, 20 patients with ET and 5 healthy people have been chosen to collect their acceleration data for activity recognition. The experimental results show the significant result on ET patients activity recognition and the SDAE model has achieved an overall accuracy of 93.33%. What’s more, this model is also used to evaluate the degree of ET and has achieved the accuracy of 95.74%. According to a set of experiments, the model we used is able to acquire significant performance on ET patients activity recognition and degree of tremor assessment.


2021 ◽  
Author(s):  
Vladimir Gligorijevic ◽  
Daniel Berenberg ◽  
Stephen Ra ◽  
Andrew Watkins ◽  
Simon Kelow ◽  
...  

Protein design is challenging because it requires searching through a vast combinatorial space that is only sparsely functional. Self-supervised learning approaches offer the potential to navigate through this space more effectively and thereby accelerate protein engineering. We introduce a sequence denoising autoencoder (DAE) that learns the manifold of protein sequences from a large amount of potentially unlabelled proteins. This DAE is combined with a function predictor that guides sampling towards sequences with higher levels of desired functions. We train the sequence DAE on more than 20M unlabeled protein sequences spanning many evolutionarily diverse protein families and train the function predictor on approximately 0.5M sequences with known function labels. At test time, we sample from the model by iteratively denoising a sequence while exploiting the gradients from the function predictor. We present a few preliminary case studies of protein design that demonstrate the effectiveness of this proposed approach, which we refer to as "deep manifold sampling", including metal binding site addition, function-preserving diversification, and global fold change.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 360
Author(s):  
Pu Yang ◽  
Chenwan Wen ◽  
Huilin Geng ◽  
Peng Liu

This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN). This method processes the original input data by using a stack denoising autoencoder. Different from the traditional autoencoder, stack pruning sparse denoising autoencoder includes a fully connected autoencoding network, the features extracted from the front layer of the network are used for the operation of the subsequent layer, which means that some new connections will appear between the front and rear layers of the network, reduce the loss of information, and obtain more effective features. Firstly, a one-dimensional sliding window is introduced for data enhancement. In addition, transforming one-dimensional time-domain data into the two-dimensional gray image can further improve the deep learning (DL) ability of models. At the same time, pruning operation is introduced to improve the training efficiency and accuracy of the network. The convolutional neural network model with sPSDAE has a faster training speed, strong adaptability to noise interference signals, and can also suppress the over-fitting problem of the convolutional neural network to a certain extent. Actual experiments show that for the fault of unmanned aerial vehicle (UAV) blade damage, the sPSDAE-CNN model we use has better stability and reliable prediction accuracy than traditional convolutional neural networks. At the same time, For noise signals, better results can be obtained. The experimental results show that the sPSDAE-CNN model still has a good diagnostic accuracy rate in a high-noise environment. In the case of a signal-to-noise ratio of −4, it still has an accuracy rate of 90%.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chang Han

Interferometric multispectral images contain rich information, so they are widely used in aviation, military, and environmental monitoring. However, the abundant information also leads to the disadvantages that longer time and more physical resources are needed in signal compression and reconstruction. In order to make up for the shortcomings of traditional compression and reconstruction algorithms, the stacked convolution denoising autoencoder (SCDA) reconstruction algorithm for interference multispectral images is proposed in this paper. And, the experimental code based on the TensorFlow system is built to reconstruct these images. The results show that, compared with D-AMP and ReconNet algorithms, the SCDA algorithm has the advantages of higher reconstruction accuracy and lower time complexity and space complexity. Therefore, the SCDA algorithm proposed in this paper can be applied to interference multispectral images.


Author(s):  
Xujie Zhang ◽  
Ping Wu ◽  
Jiajun He ◽  
Yichao Liu ◽  
Lin Wang ◽  
...  

Currently, the offshore wind turbine has become a hot research area in the wind energy industry. Among different offshore wind turbines, floating offshore wind turbine (FOWT) can harvest abundant wind energy in deepwater areas. However, the harsh working environment will dramatically increase the maintenance cost and downtime of FOWTs. Wind turbine fault diagnosis is being regarded as an indispensable system for maintenance issues. Owing to the complexity of FOWT, it imposes an enormous challenge for effective fault diagnosis. This paper develops a novel FOWT fault diagnosis method based on a stacked denoising autoencoder (SDAE). First, a sliding window technique is adopted for time-series data to preserve temporal information. Then, SDAE is employed to extract the features from high-dimensional data. Based on the extracted features from SDAE, a classifier using multilayer perceptrons (MLP) is developed to determine the health status of the FOWT. To verify the performance of the proposed method, a FOWT simulation benchmark based on the National Renewable Energy Laboratory (NREL) FAST simulator is employed. Results show the superior performance of the proposed method by comparison with other relevant methods.


Sign in / Sign up

Export Citation Format

Share Document