scholarly journals The nature of point source fringes in mid-infrared spectra acquired with the James Webb Space Telescope

2020 ◽  
Vol 641 ◽  
pp. A150 ◽  
Author(s):  
Ioannis Argyriou ◽  
Martyn Wells ◽  
Alistair Glasse ◽  
David Lee ◽  
Pierre Royer ◽  
...  

Context. As is common for infrared spectrometers, the constructive and destructive interference in different layers of the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector arrays modulate the detected signal as a function of wavelength. The resulting “fringing” in the Medium-Resolution Spectrometer (MRS) spectra varies in amplitude between 10% and 30% of the spectral baseline. A common method for correcting for fringes relies on dividing the data by a fringe flat. In the case of MIRI MRS, the fringe flat is derived from measurements of an extended, spatially homogeneous source acquired during the thermal-vacuum ground verification of the instrument. While this approach reduces fringe amplitudes of extended sources below the percent level, at the detector level, point source fringe residuals vary in a systematic way across the point spread function. The effect could hamper the scientific interpretation of MRS observations of unresolved sources, semi-extended sources, and point sources in crowded fields. Aims. We find MIRI MRS point source fringes to be reproducible under similar observing conditions. We want to investigate whether a generic and accurate correction can be determined. Therefore, we want to identify the variables, if they exist, that would allow for a parametrization of the signal variations induced by point source fringe modulations. Methods. We determine the point source fringe properties by analyzing MRS detector plane images acquired on the ground. We extracted the fringe profile of multiple point source observations and studied the amplitude and phase of the fringes as a function of field position and pixel sampling of the point spread function of the optical chain. Results. A systematic variation in the amplitude and phase of the point source fringes is found over the wavelength range covered by the test sources (4.9 − 5.8 μm). The variation depends on the fraction of the point spread function seen by the detector pixel. We identify the non-uniform pixel illumination as the root cause of the reported systematic variation. This new finding allows us to reconcile the point source and extended source fringe patterns observed in test data during ground verification. We report an improvement after correction of 50% on the 1σ standard deviation of the spectral continuum. A 50% improvement is also reported in line sensitivity for a benchmark test with a spectral continuum of 100 mJy. The improvement in the shape of weak lines is illustrated using a T Tauri model spectrum. Consequently, we verify that fringes of extended sources and potentially semi-extended sources and crowded fields can be simulated by combining multiple point source fringe transmissions. Furthermore, we discuss the applicability of this novel fringe-correction method to the MRS data (and the data of other instruments).

2021 ◽  
Vol 508 (1) ◽  
pp. 755-761
Author(s):  
Geoff C-F Chen ◽  
Tommaso Treu ◽  
Christopher D Fassnacht ◽  
Sam Ragland ◽  
Thomas Schmidt ◽  
...  

ABSTRACT Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby.


1993 ◽  
Vol 155 ◽  
pp. 212-212
Author(s):  
M. A. Dopita ◽  
S. J. Meatheringham ◽  
P. R. Wood ◽  
H. C. Ford ◽  
R. C. Bohlin ◽  
...  

We have obtained Hubble Space Telescope (HST) Planetary Camera (PC) images of a number of Magellanic Cloud planetary nebulae. The objects, except for SMP 83 were observed as part of the Cycle I GO program. The observations were made in the [O III] λ5007Å line. The object SMP 83, was observed as part of the GTO program, and in this case observations were also made in the Hα line using the F650N filter. In order to characterise the point spread function, a star was placed at the same point on the chip as the PN. This allowed us to determine the diameters of barely resolved PN in an accurate manner, by convolving the PSF with a function until it matched the appearance of the PN image. The results are given in Table 1.


2019 ◽  
Vol 12 (1) ◽  
pp. 259-286 ◽  
Author(s):  
Chao Wang ◽  
Raymond Chan ◽  
Mila Nikolova ◽  
Robert Plemmons ◽  
Sudhakar Prasad

2018 ◽  
Vol 619 ◽  
pp. A7 ◽  
Author(s):  
I. Vovk ◽  
M. Strzys ◽  
C. Fruck

Context. The increase in sensitivity of Imaging Atmospheric Cherenkov Telescopes (IACTs) has lead to numerous detections of extended γ-ray sources at TeV energies, sometimes of sizes comparable to the instrument’s field of view. This creates a demand for advanced and flexible data analysis methods that are able to extract source information using the photon counts in the entire field of view. Aims. We present a new software package, “SkyPrism”, aimed at performing 2D (3D if energy is considered) fits of IACT data that possibly contain multiple and extended sources. The fits are based on sky images binned in energy. Although the development of this package was focused on the analysis of data collected with the MAGIC telescopes, it can further be adapted to other instruments, such as the future Cherenkov Telescope Array. Methods. We have developed a set of tools that in addition to sky images (count maps) compute the instrument response functions of MAGIC (effective exposure throughout the field of view, point spread function, energy resolution, and background shape) based on the input data, Monte Carlo simulations, and the pointing track of the telescopes. With this information, the package can perform a simultaneous maximum likelihood fit of source models of arbitrary morphology to the sky images providing energy spectra, detection significances, and upper limits. Results. We demonstrate that the SkyPrism tool accurately reconstructs the MAGIC point spread function, on- and off-axis performance as well as the underlying background. We further show that for a point source analysis with the MAGIC default observational settings, SkyPrism gives results compatible with those of the standard tools while being more flexible and widely applicable.


Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 451-458 ◽  
Author(s):  
Chunqi Jin ◽  
Jihua Zhang ◽  
Chunlei Guo

AbstractMetasurfaces are two-dimensional arrangements of antennas that control the propagation of electromagnetic waves with a subwavelength thickness and resolution. Previously, metasurfaces have been mostly used to obtain the function of a single optical element. Here, we demonstrate a plasmonic metasurface that represents the combination of a phase mask generating a double-helix point spread function (DH-PSF) and a metalens for imaging. DH-PSF has been widely studied in three-dimensional (3D) super-resolution imaging, biomedical imaging, and particle tracking, but the current DH-PSFs are inefficient, bulky, and difficult to integrate. The multielement metasurface, which we label as DH-metalens, enables a DH-PSF with transfer efficiency up to 70.3% and an ultrahigh level of optical system integration, three orders of magnitude smaller than those realized by conventional phase elements. Moreover, the demonstrated DH-metalens can work in broadband visible wavelengths and in multiple incident polarization states. Finally, we demonstrate the application of the DH-metalens in 3D imaging of point sources. These results pave ways for realizing integrated DH-PSFs, which have applications in 3D super-resolution microscopy, single particle tracking/imaging, and machine vision.


2021 ◽  
Vol 502 (3) ◽  
pp. 4048-4063
Author(s):  
Arun Kannawadi ◽  
Erik Rosenberg ◽  
Henk Hoekstra

ABSTRACT metacalibration is a state-of-the-art technique for measuring weak gravitational lensing shear from well-sampled galaxy images. We investigate the accuracy of shear measured with metacalibration from fitting elliptical Gaussians to undersampled galaxy images. In this case, metacalibration introduces aliasing effects leading to an ensemble multiplicative shear bias about 0.01 for Euclid  and even larger for the Roman Space Telescope, well exceeding the missions’ requirements. We find that this aliasing bias can be mitigated by computing shapes from weighted moments with wider Gaussians as weight functions, thereby trading bias for a slight increase in variance of the measurements. We show that this approach is robust to the point-spread function in consideration and meets the stringent requirements of Euclid for galaxies with moderate to high signal-to-noise ratios. We therefore advocate metacalibration as a viable shear measurement option for weak lensing from upcoming space missions.


Sign in / Sign up

Export Citation Format

Share Document