extended sources
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 65)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 922 (2) ◽  
pp. 130
Author(s):  
Yi Zhang (张艺) ◽  
Ruo-Yu Liu ◽  
S. Z. Chen ◽  
Xiang-Yu Wang

Abstract Recently, gamma-ray halos of a few degree extension have been detected around two middle-aged pulsars, namely, Geminga and PSR B0656+14, by the High Altitude Water Cherenkov observatory (HAWC). The gamma-ray radiation arises from relativistic electrons that escape the pulsar wind nebula and diffuse in the surrounding medium. The diffusion coefficient is found to be significantly lower than the average value in the Galactic disk. If so, given a typical transverse velocity of 300–500 km s−1 for a pulsar, its displacement could be important in shaping the morphology of its gamma-ray halos. Motivated by this, we study the morphology of pulsar halos considering the proper motion of pulsar. We define three evolutionary phases of the pulsar halo to categorize its morphological features. The morphology of pulsar halos below 10 TeV is double peaked or single peaked with an extended tail, which depends on the electron injection history. Above 10 TeV, the morphology of pulsar halos is nearly spherical, due to the short cooling timescale (<50 kyr) for tens of teraelectronvolt electrons. We also quantitatively evaluate the separation between the pulsar and the center of the gamma-ray halo, as well as the influence of different assumptions on the pulsar characteristics and the injected electrons. Our results suggest that the separation between the center of the gamma-ray halo above 10 TeV and the associated pulsar is usually too small to be observable by HAWC or the Large High Altitude Air Shower Observatory. Hence, our results provide a useful approach to constrain the origin of extended sources at very high energies.


2021 ◽  
Author(s):  
Xiyuan Jiang ◽  
Shuai Ye ◽  
Abbas Sohrabpour ◽  
Anto Bagic ◽  
Bin He

Non-invasive MEG/EEG source imaging provides valuable information about the epileptogenic brain areas which can be used to aid presurgical planning in focal epilepsy patients suffering from drug-resistant seizures. However, the source extent estimation for electrophysiological source imaging remains to be a challenge and is usually largely dependent on subjective choice. Our recently developed algorithm, fast spatiotemporal iteratively reweighted edge sparsity minimization (FAST-IRES) strategy, has been shown to objectively estimate extended sources from EEG recording, while it has not been applied to MEG recordings. In this work, through extensive numerical experiments and real data analysis in a group of focal drug-resistant epilepsy patients interictal spikes, we demonstrated the ability of FAST-IRES algorithm to image the location and extent of underlying epilepsy sources from MEG measurements. Our results indicate the merits of FAST-IRES in imaging the location and extent of epilepsy sources for pre-surgical evaluation from MEG measurements.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Prabir Banik ◽  
Arunava Bhadra

AbstractRecently the MAGIC telescope observed three TeV gamma-ray extended sources in the galactic plane in the neighborhood of radio SNR G24.7+0.6. Among them, the PWN HESS J1837-069 was detected earlier by the HESS observatory during its first galactic plane survey. The other two sources, MAGIC J1835-069 and MAGIC J1837-073 are detected for the first time at such high energies. Here we shall show that the observed gamma-rays from the SNR G24.7+0.6 and the HESS J1837-069 can be explained in terms of hadronic interactions of the PWN/SNR accelerated cosmic rays with the ambient matter. We shall further demonstrate that the observed gamma-rays from the MAGIC J1837-073 can be interpreted through hadronic interactions of runaway cosmic-rays from PWN HESS J1837-069 with the molecular cloud at the location of MAGIC J1837-073. No such association has been found between MAGIC J1835-069 and SNR G24.7+0.6 or PWN HESS J1837-069. We have examined the maximum energy attainable by cosmic-ray particles in the SNR G24.7+0.6/ PWN HESS J1837-069 and the possibility of their detection with future gamma-ray telescopes. The study of TeV neutrino emissions from the stated sources suggests that the HESS J1837-069 should be detected by IceCube Gen-2 neutrino telescope in a few years of observation.


2021 ◽  
Author(s):  
Donglin Ma ◽  
ShiLi Wei ◽  
Zhu Zhengbo ◽  
WENYI LI

2021 ◽  
Author(s):  
Benedikt Hemmer ◽  
Christin Proß ◽  
Stanley P. Sander ◽  
Thomas J. Pongetti ◽  
Zhao-Cheng Zeng ◽  
...  

&lt;div&gt; &lt;div&gt;Precise knowledge of sources and sinks in the carbon cycle is desired to understand its sensitivity to climate change and to account and verify man-made emissions. In this context, extended sources like urban areas play an important role. While in-situ measurements of carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) and methane (CH&lt;sub&gt;4&lt;/sub&gt;) are highly accurate but localized, satellites measure column-integrated concentrations over an extended footprint. The CLARS-FTS [1, 2] stationed at the Mt. Wilson observatory looking downward into the Los Angeles basin has pioneered an innovative measurement technique that fills the sensitivity gap between in-situ and satellite measurements. The technique enables mapping the urban greenhouse gas concentration fields by collecting spectra of ground scattered sunlight and scanning through the region.&lt;/div&gt; &lt;div&gt;&amp;#160;&lt;/div&gt; &lt;div&gt;Here, we report on progress developing a portable setup for a CLARS-FTS-like measurement geometry. The instrument is based on the EM27/SUN FTS with a modified pointing technique and a more sensitive detector. The retrieval algorithm is based on the RemoTeC software, previously employed for solar backscatter satellite measurements. We discuss first steps in terms of instrument performance and retrieval exercises. For the latter, we have carried out simulations on how the neglect of scattering by the retrieval affects the retrieved boundary layer concentrations of CO&lt;sub&gt;2&lt;/sub&gt; and CH&lt;sub&gt;4&lt;/sub&gt; for an ensemble of hypothetical scenes with variable complexity in aeorsol loadings and viewing geometry. We also report on a test to apply RemoTeC to a small set of CLARS-FTS spectra collected throughout the Los Angeles basin.&lt;/div&gt; &lt;div&gt;&amp;#160;&lt;/div&gt; &lt;div&gt;&lt;em&gt;References&lt;/em&gt;&lt;/div&gt; &lt;div&gt;[1] Fu, D. et al., 2014: Near-infrared remote sensing of Los Angeles trace gas distributions from a mountaintop site, Atmos. Meas. Tech., 7, 713&amp;#8211;729, https://doi.org/10.5194/amt-7-713-2014&lt;/div&gt; [2] Wong, K. W. et al., 2015: Mapping CH4 : CO2 ratios in Los Angeles with CLARS-FTS from Mount Wilson, California, Atmos. Chem. Phys., 15, 241&amp;#8211;252, https://doi.org/10.5194/acp-15-241-2015&lt;/div&gt;


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


2021 ◽  
Vol 10 (01) ◽  
pp. 2150002
Author(s):  
Igor Loutsenko ◽  
Oksana Yermolayeva

We propose a class of graded coronagraphic “amplitude” image masks for a high throughput Lyot-type coronagraph that transmits light from an annular region around an extended source and suppresses light, with extremely high ratio, from elsewhere. The interior radius of the region is comparable with its exterior radius. The masks are designed using an idea inspired by approach due M. J. Kuchner and W. A. Traub (“band-limited” masks) and approach to optimal apodization by D. Slepian. One potential application of our masks is direct high-resolution imaging of exo-planets with the help of the Solar Gravitational Lens, where apparent radius of the “Einstein ring” image of a planet is of the order of an arc-second and is comparable with the apparent radius of the sun and solar corona.


2021 ◽  
Vol 502 (2) ◽  
pp. 1908-1924
Author(s):  
Andrew Everall ◽  
Douglas Boubert ◽  
Sergey E Koposov ◽  
Leigh Smith ◽  
Berry Holl

ABSTRACT Gaia Data Release 2 (DR2) published positions, parallaxes, and proper motions for an unprecedented 1331 909 727 sources, revolutionizing the field of Galactic dynamics. We complement this data with the astrometry spread function (ASF), the expected uncertainty in the measured positions, proper motions, and parallax for a non-accelerating point source. The ASF is a Gaussian function for which we construct the 5D astrometric covariance matrix as a function of position on the sky and apparent magnitude using the Gaia DR2 scanning law and demonstrate excellent agreement with the observed data. This can be used to answer the question ‘What astrometric covariance would Gaia have published if my star was a non-accelerating point source?’. The ASF will enable characterization of binary systems, exoplanet orbits, astrometric microlensing events, and extended sources that add an excess astrometric noise to the expected astrometry uncertainty. By using the ASF to estimate the unit weight error of Gaia DR2 sources, we demonstrate that the ASF indeed provides a direct probe of the excess source noise. We use the ASF to estimate the contribution to the selection function of the Gaia astrometric sample from a cut on astrometric_sigma5d_max showing high completeness for G &lt; 20 dropping to ${\lt} 1{{\ \rm per\ cent}}$ in underscanned regions of the sky for G = 21. We have added an ASF module to the python package scanninglaw (https://github.com/gaiaverse/scanninglaw) through which users can access the ASF.


Sign in / Sign up

Export Citation Format

Share Document