Ulysses Observations of Nonlinear Wave-wave Interactions in the Source Regions of Type III Solar Radio Bursts

2000 ◽  
Vol 179 ◽  
pp. 447-450
Author(s):  
G. Thejappa ◽  
R. J. MacDowall

AbstractThe Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type III radio emissions in the interplanetary medium. Bursts of 50–300 Hz (in the spacecraft frame) electric field signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons, suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak turbulence processes, such as electrostatic decay, in a few type III burst source regions.

2004 ◽  
Vol 11 (3) ◽  
pp. 411-420 ◽  
Author(s):  
G. Thejappa ◽  
R. J. MacDowall

Abstract. Short wavelength ion sound waves (2-4kHz) are detected in association with the Langmuir waves (~15-30kHz) in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.


1996 ◽  
Vol 154 ◽  
pp. 195-198
Author(s):  
G. Thejappa ◽  
R.G. Stone ◽  
M.L. Goldstein

AbstractWe present the experimental verification of existing theoretical models of emission mechanisms of solar type III bursts at the second harmonic of the plasma frequency, ωpe. This study is based on the detection of Langmuir and envelope solitons by the Ulysses spacecraft inside three type III burst source regions. We show that the oscillating-two-stream instability, coherent radiation by Langmuir solitons and stochastic phase mixing of the Langmuir waves in the strong turbulence regime are the appropriate emission mechanisms at 2ωpe.


1985 ◽  
Vol 63 (4) ◽  
pp. 435-436
Author(s):  
Bhimsen K. Shivamoggi

Karpman's method is explored for the modulational instability of ion-acoustic waves on interaction with a slow plasma motion. The latter are found to be modulationally stable, unlike the Langmuir waves.


1990 ◽  
Vol 142 ◽  
pp. 467-481
Author(s):  
R. P. Lin

The ISEE-3 spacecraft has provided in situ observations of electron beams, plasma waves, and associated solar type III radio emission in the interplanetary medium near 1 AU. These observations show that electron beams are formed by the faster electrons arriving before the slower ones, following an impulsive injection at the Sun. The resulting bump-on-tail in the reduced one-dimensional distribution function, f(v||), is unstable to the growth of electrostatic electron plasma (Langmuir) waves. The Langmuir waves are observed to be highly impulsive in nature. The onset and temporal variations of the observed plasma waves are in good qualitative agreement with the wave growth expected from the evolution of measured f(v||). However, far higher Langmuir wave intensities are predicted than are detected. In addition, the lack of obvious plateauing of the bump-on-tail suggests that the waves have been removed from resonance with the beam electrons by some wave-wave interaction. Bursts of low frequency, 30–300 Hz (in the spacecraft frame) waves are often found coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wave number approximately equal to the beam-resonant Langmuir wave number. The observations suggest several possible interpretations: modulational instability, electrostatic decay instability, and electromagnetic decay instability; but none of these are fully consistent with the observations. Microstructures, too short in duration to be resolved by present experiments, have been invoked as an explanation of the phenomenon. Experiments are currently being developed to study these processes using fast wave-particle correlation techniques.


1980 ◽  
Vol 86 ◽  
pp. 251-254
Author(s):  
A. O. Benz ◽  
D. G. Wentzel

(paper submitted to Astronomy and Astrophysics)We propose a model for type I emission based on scattering of Langmuir waves by ion acoustic waves, which are associated with the evolution of the associated active region on the Sun.


1999 ◽  
Vol 104 (A12) ◽  
pp. 28279-28293 ◽  
Author(s):  
G. Thejappa ◽  
M. L. Goldstein ◽  
R. J. MacDowall ◽  
K. Papadopoulos ◽  
R. G. Stone

Sign in / Sign up

Export Citation Format

Share Document