langmuir wave
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 28)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 924 (2) ◽  
pp. L24
Author(s):  
C. Krafft ◽  
P. Savoini

Abstract The generation of Langmuir wave turbulence by a weak electron beam in a randomly inhomogeneous plasma and its subsequent electromagnetic radiation are studied owing to two-dimensional particle-in-cell simulations in conditions relevant to type III solar radio bursts. The essential impact of random density fluctuations of average levels of a few percents of the background plasma on the characteristics of the electromagnetic radiation at the fundamental plasma frequency ω p is shown. Not only wave nonlinear interactions but also processes of Langmuir waves’ transformations on the density fluctuations contribute to the generation of such emissions. During the beam relaxation, the amount of electromagnetic energy radiated at ω p in a plasma with density fluctuations strongly exceeds that observed when the plasma is homogeneous. The fraction of Langmuir wave energy involved in the generation of electromagnetic emissions at ω p saturates around 10−4, i.e., one order of magnitude above that reached when the plasma is uniform. Moreover, whereas harmonic emission at 2ω p dominates over fundamental emission during the time evolution in a homogeneous plasma, fundamental emission is strongly dominant when the plasma contains density fluctuations, at least during several thousands of plasma periods before being overcome by harmonic emission when the total electromagnetic energy begins to saturate.


2021 ◽  
Author(s):  
Chrystal Moser ◽  
James LaBelle ◽  
Iver H. Cairns

Abstract. The High-Bandwidth Auroral Rocket (HIBAR) was launched from Poker Flat, Alaska on January 28, 2003 at 07:50 UT towards an apogee of 382 km in the night-side aurora. The flight was unique in having three high-frequency (HF) receivers using multiple antennas parallel and perpendicular to the ambient magnetic field, as well as very low frequency (VLF) receivers using antennas perpendicular to the magnetic field. These receivers observed five short-lived Langmuir wave bursts lasting from 0.1–0.2 s, consisting of a thin plasma line with frequencies in the range of 2470–2610 kHz that had an associated diffuse feature occurring 5–10 kHz above the plasma line. Both of these waves occurred slightly above the local plasma frequency with amplitudes between 1–100 μV/m. The ratio of the parallel to perpendicular components of the plasma line and diffuse feature were used to determine the angle of propagation of these waves with respect to the background magnetic field. These angles were found to be comparable to the theoretical Z-infinity angle that these waves would resonate at. The VLF receiver detected auroral hiss throughout the flight at 5–10 kHz, a frequency matching the difference between the plasma line and the diffuse feature. A dispersion solver, partially informed with measured electron distributions, and associated frequency- and wavevector-matching conditions were employed to determine if the diffuse features could be generated by a nonlinear wave-wave interaction of the plasma line with the lower frequency auroral hiss waves/lower-hybrid waves. The results show that this interpretation is plausible.


2021 ◽  
Vol 923 (1) ◽  
pp. 103
Author(s):  
C. Krafft ◽  
A. S. Volokitin

Abstract Solar coronal and wind plasmas often contain density fluctuations of various scales and amplitudes. The scattering of Langmuir wave turbulence on these inhomogeneities modifies the properties of the radiated electromagnetic emissions traveling from the Sun to the Earth. This paper shows the similarities between the physical results obtained by (i) a model based on the Zakharov equations, describing the self-consistent dynamics of Langmuir wave turbulence spectra in a plasma with external density fluctuations, and (ii) a modeling, within the framework of geometric optics approximation, of quasi-particles (representing plasmon quanta) moving in a fluctuating potential. It is shown that the dynamics of the Langmuir spectra is governed by anomalous diffusion processes, as a result of multiple scattering of waves on the density fluctuations; the same dynamics are observed in the momenta distributions of quasi-particles moving in potential structures with random inhomogeneities. These spectra and distributions are both characterized by a fast broadening during which energy is transported to larger wavevectors and momenta, exhibiting nonlinear time dependence of the average squares of wavevectors and quasi-particle momenta as well as non-Gaussian tails in the asymptotic stage. The corresponding diffusion coefficients depend on the time and are proportional to the square of the average level of density (or potential) fluctuations. It appears that anomalous transport and superdiffusion phenomena are responsible for the spectral broadening.


Author(s):  
Yong Liu ◽  
Xu Chen

Abstract The dispersion of Langmuir wave (LW) in an unmagnetized collisionless plasma with regularized Kappa distributed electrons is investigated from the kinetic theory. The frequency and damping rate of LW are analyzed for the parameters relating to the source region of a solar type III radio burst. It is found that the linear behavior of LW is greatly modified by the suprathermal index κ and the exponential cutoff parameter α. In the region κ<1.5, the damping rate of LW will be much larger than the one with Maxwellian distributed electrons. Hence, the nonlinear process of LW in low κ region may exhibit different properties in comparison with the one in large $\kappa$ region.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yichen Fu ◽  
Hong Qin

AbstractPlasmas have been recently studied as topological materials. However, a comprehensive picture of topological phases and topological phase transitions in cold magnetized plasmas is still missing. Here we systematically map out all the topological phases and establish the bulk-edge correspondence in cold magnetized plasmas. We find that for the linear eigenmodes, there are 10 topological phases in the parameter space of density n, magnetic field B, and parallel wavenumber kz, separated by the surfaces of Langmuir wave-L wave resonance, Langmuir wave-cyclotron wave resonance, and zero magnetic field. For fixed B and kz, only the phase transition at the Langmuir wave-cyclotron wave resonance corresponds to edge modes. A sufficient and necessary condition for the existence of this type of edge modes is given and verified by numerical solutions. We demonstrate that edge modes exist not only on a plasma-vacuum interface but also on more general plasma-plasma interfaces. This finding broadens the possible applications of these exotic excitations in space and laboratory plasmas.


2021 ◽  
Vol 28 (5) ◽  
pp. 059902
Author(s):  
F. Pérez ◽  
F. Amiranoff ◽  
C. Briand ◽  
S. Depierreux ◽  
M. Grech ◽  
...  

2021 ◽  
Vol 28 (4) ◽  
pp. 043102
Author(s):  
F. Pérez ◽  
F. Amiranoff ◽  
C. Briand ◽  
S. Depierreux ◽  
M. Grech ◽  
...  

2021 ◽  
Author(s):  
Jan Benáček ◽  
Marian Karlický

&lt;p&gt;We study how hot plasma that is released during a solar flare can be confined in its source and interact with surrounding colder plasma. The X-ray emission of coronal flare sources is well explained using Kappa velocity distribution. Therefore, we compare the difference in the confinement of plasma with Kappa and Maxwellian distribution. We use a 3D Particle-in-Cell code, which is large along magnetic field lines, effectively one-dimensional, but contains all electromagnetic effects. In the case with Kappa distribution, contrary to Maxwellian distribution, we found formation of several thermal fronts associated with double-layers that suppress particle fluxes. As the Kappa distribution of electrons forms an extended tail, more electrons are not confined by the first front and cause formation of multiple fronts. A beam of electrons from the hot part is formed at each front; it generates return current, Langmuir wave density depressions, and a double layer with a higher potential step than in the Maxwellian case. We compare the Kappa and Maxwellian cases and discuss how these processes could be observed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document