scholarly journals A Complete and Efficient Multisphere Scattering Theory for Modeling the Optical Properties of Interplanetary Dust

1996 ◽  
Vol 150 ◽  
pp. 419-422 ◽  
Author(s):  
Yu-lin Xu ◽  
Bo Å. S. Gustafson

For a long time, the dominant scattering theory used in radiative transfer and scattering calculations has been Mie theory, which is the complete solution to the problems of light scattering by single, isotropic, and homogeneous spheres. However, cosmic dust collections show that most of the largest sized interplanetary dust particles may be porous, inhomogeneous, and aggregated and may have quite different scattering properties. Arbitrary configurations of aggregated spheres may provide a reasonable first approximation to realistic light-scattering models of interplanetary dust particles. In the last few decades, progress has been made in developing light scattering theory for interacting spheres, The development of the addition theorems for scalar and vector spherical wave functions (Friedman & Russek, 1954; Stein, 1961; Cruzan, 1962) opened up a new area in the theoretical study of multisphere scattering problems.

2019 ◽  
Vol 631 ◽  
pp. A164 ◽  
Author(s):  
Johannes Markkanen ◽  
Jessica Agarwal

Context. Remote light scattering and thermal infrared observations provide clues about the physical properties of cometary and interplanetary dust particles. Identifying these properties will lead to a better understanding of the formation and evolution of the Solar System. Aims. We present a numerical solution for the radiative and conductive heat transport in a random particulate medium enclosed by an arbitrarily shaped surface. The method will be applied to study thermal properties of cometary dust particles. Methods. The recently introduced incoherent Monte Carlo radiative transfer method developed for scattering, absorption, and propagation of electromagnetic waves in dense discrete random media is extended for radiative heat transfer and thermal emission. The solution is coupled with the conductive Fourier transport equation that is solved with the finite-element method. Results. The proposed method allows the synoptic analysis of light scattering and thermal emission by large cometary dust particles consisting of submicrometer-sized grains. In particular, we show that these particles can sustain significant temperature gradients resulting in the superheating factor phase function observed for the coma of comet 67P/Churyumov–Gerasimenko.


2018 ◽  
Author(s):  
Katherine Burgess ◽  
◽  
David Bour ◽  
Rhonda M. Stroud ◽  
Anais Bardyn ◽  
...  

1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


2020 ◽  
Vol 183 ◽  
pp. 104527 ◽  
Author(s):  
E. Hadamcik ◽  
J. Lasue ◽  
A.C. Levasseur-Regourd ◽  
J.-B. Renard

1991 ◽  
Vol 126 ◽  
pp. 397-404 ◽  
Author(s):  
S. A. Sandford

AbstractSamples of interplanetary dust particles (IDPs) have now been collected from the stratosphere, from the Earth’s ocean beds, and from the ice caps of Greenland and Antarctica The most likely candidates for the sources of these particles are comets and asteroids. Comparison of the infrared spectra, elemental compositions, and mineralogy of the collected dust with atmospheric entry models and data obtained from cometary probes and telescopic observations has provided important constraints on the possible sources of the various types of collected dust. These constraints lead to the following conclusions. First, most of the deep sea, Greenland, and Antarctic spherules larger than 100 μm are derived from asteroids. Second, the stratospheric IDPs dominated by hydrated layer-lattice silicate minerals are also most likely derived from asteroids. Finally, the stratospheric IDPs dominated by the anhydrous minerals olivine and pyroxene are most likely from comets. The consequences of these parent body assignments are discussed.


Sign in / Sign up

Export Citation Format

Share Document