scholarly journals Indications of melt in near-surface ice-core stratigraphy: comparisons with passive-microwave melt signals over the Greenland ice sheet

1995 ◽  
Vol 21 ◽  
pp. 59-63 ◽  
Author(s):  
Clinton M. Rowe ◽  
Mark R. Anderson ◽  
Thomas L. Mote ◽  
Karl C. Kuivinen

During the summer of 1993, a field program was conducted to collect several shallow firn cores from two locations in the southern region of the Greenland ice sheet. Stratigraphic evidence of melt from these cores was used for comparison with satellite-derived indications of melt. The shallow firn cores were examined for stratigraphic evidence of past melt events and were sampled for oxygen-isotope analysis to delineate the annual accumulation layers in the snowpack. The relative intensity of each year’s summer melt episode was compared to the corresponding melt frequency derived from microwave emissions. This comparison demonstrates that a linkage between the stratigraphic record and microwave data can be established. Both data sets indicate that there was less melt during the late 1970s and early 1980s than during the late 1980s, in general agreement with climate observations.

1995 ◽  
Vol 21 ◽  
pp. 59-63 ◽  
Author(s):  
Clinton M. Rowe ◽  
Mark R. Anderson ◽  
Thomas L. Mote ◽  
Karl C. Kuivinen

During the summer of 1993, a field program was conducted to collect several shallow firn cores from two locations in the southern region of the Greenland ice sheet. Stratigraphic evidence of melt from these cores was used for comparison with satellite-derived indications of melt.The shallow firn cores were examined for stratigraphic evidence of past melt events and were sampled for oxygen-isotope analysis to delineate the annual accumulation layers in the snowpack. The relative intensity of each year’s summer melt episode was compared to the corresponding melt frequency derived from microwave emissions. This comparison demonstrates that a linkage between the stratigraphic record and microwave data can be established. Both data sets indicate that there was less melt during the late 1970s and early 1980s than during the late 1980s, in general agreement with climate observations.


1995 ◽  
Vol 41 (137) ◽  
pp. 51-60 ◽  
Author(s):  
Thomas L. Mote ◽  
Mark R. Anderson

AbstractA simple microwave-emission model is used to simulate 37 GHz brightness temperatures associated with snowpack-melt conditions for locations across the Greenland ice sheet. The simulated values are utilized as threshold values and compared to daily, gridded SMMR and SSM/I passive-microwave data, in order to reveal regions experiencing melt. The spatial extent of the area classified as melting is examined on a daily, monthly and seasonal (May-August) basis for 1979–91. The typical seasonal cycle of melt coverage shows melt beginning in late April, a rapid increase in the melting area from mid-May to mid-July, a rapid decrease in melt extent from late July through mid-August, and cessation of melt in late September. Seasonal averages of the daily melt extents demonstrate an apparent increase in melt coverage over the 13 year period of approximately 3.8% annually (significant at the 95% confidence interval). This increase is dominated by statistically significant positive trends in melt coverage during July and August in the west and southwest of the ice sheet. We find that a linear correlation between microwave-derived melt extent and a surface measure of ablation rate is significant in June and July but not August, so caution must be exercised in using the microwave-derived melt extents in August. Nevertheless, knowledge of the variability of snowpack melt on the Greenland ice sheet as derived from microwave data should prove useful in detecting climate change in the Arctic and examining the impact of climate change on the ice sheet.


1993 ◽  
Vol 39 (133) ◽  
pp. 687-697 ◽  
Author(s):  
Curt H. Davis ◽  
H. Jay Zwally

AbstractGeosat-altimeter wave forms from the Greenland and Antarctic ice sheets are analyzed using an algorithm based upon a combined surface-and volume-scattering model. The results demonstrate that sub-surface volume-scattering occurs over major parts of the ice sheets. Quantitative estimates of geographic variations in the near-surface ice-sheet properties are derived by retracking individual altimeter wave forms. The derived surface properties correlate with elevation, latitude and microwave brightness-temperature data. Specifically, the extinction coefficient of snow obtained by this method varies from 0.48 to 0.13 m−1 over the latitudes from 65° to 72°N on the central part of the Greenland ice sheet and from 0.20 to 0.10 m−1 over a section of Wilkes Land in East Antarctica where the elevation increases from 2550 to 3150 m.Analysis of passive-microwave data over East Antarctica shows that the brightness temperature increases with elevation as the extinction coefficient decreases. Larger snow grain-sizes occur at lower elevations of the ice sheet because of higher mean annual temperatures. The larger grain-sizes increase the extinction coefficient of snow and decrease the emitted energy (brightness temperature) from greater snow depths. The passive-microwave data are also used to determine the average number of melt d year−1 (1979–87) for the central part of the Greenland ice sheet. For latitudes from 65° to 68.5° N, the average number of melt days decreases from 3.5 to 0.25 d year, whereas no melt events are observed for latitudes above 69°N over the 8 year period. Snow subjected to alternate melting and freezing has enhanced grain-sizes compared to that of dry snow. This accounts for the larger values and larger spatial variations of ke on the Greenland ice sheet compared to East Antarctica, where surface temperatures are never high enough to cause surface melting.


2002 ◽  
Vol 35 ◽  
pp. 136-144 ◽  
Author(s):  
Niels Reeh ◽  
Hans Oerter ◽  
Henrik Højmark Thomsen

AbstractOld ice for palaeoenvironmental studies retrieved by deep core drilling in the central regions of the large ice sheets can also be retrieved from the ice-sheet margins. the δ18O content of the surface ice was studied at 15 different Greenland ice-margin locations. At some locations, two or more records were obtained along closely spaced parallel sampling profiles, showing good reproducibility of the records. We present ice-margin δ18O records reaching back to the Pleistocene. Many of the characteristic δ18O variations known from Greenland deep ice cores can be recognized, allowing an approximate time-scale to be established along the ice-margin records. A flowline model is used to determine the location on the ice sheet where the margin ice was originally deposited as snow. the Pleistocene–Holocene δ18O change at the deposition sites is determined by comparing the δ18O values in the ice-margin record to the present δ18O values of the surface snow at the deposition sites. on the northern slope of the Greenland ice sheet, the Pleistocene–Holocene δ18O change is about 10‰ in contrast to a change of 6–7‰ at locations near the central ice divide. This is in accordance with deep ice-core results. We conclude that δ18O records measured on ice from the Greenland ice-sheet margin provide useful information about past climate and dynamics of the ice sheet, and thus are important (and cheap) supplements to deep ice-core records.


2011 ◽  
Vol 5 (2) ◽  
pp. 359-375 ◽  
Author(s):  
X. Fettweis ◽  
M. Tedesco ◽  
M. van den Broeke ◽  
J. Ettema

Abstract. To study near-surface melt changes over the Greenland ice sheet (GrIS) since 1979, melt extent estimates from two regional climate models were compared with those obtained from spaceborne microwave brightness temperatures using two different remote sensing algorithms. The results from the two models were consistent with those obtained with the remote sensing algorithms at both daily and yearly time scales, encouraging the use of the models for analyzing melting trends before the satellite era (1958–1979), when forcing data is available. Differences between satellite-derived and model-simulated results still occur and are used here to identify (i) biases in the snow models (notably in the albedo parametrization, in the thickness of a snow layer, in the maximum liquid water content within the snowpack and in the snowfall impacting the bare ice appearance in summer) and (ii) limitations in the use of passive microwave data for snowmelt detection at the edge of the ice sheet due to mixed pixel effect (e.g., tundra or rock nearby the ice sheet). The results from models and spaceborne microwave sensors confirm a significant (p-value = 0.01) increase in GrIS surface melting since 1979. The melt extent recorded over the last years (1998, 2003, 2005 and 2007) is unprecedented in the last 50 yr with the cumulated melt area in the 2000's being, on the average, twice that of the 1980's.


1995 ◽  
Vol 41 (137) ◽  
pp. 51-60 ◽  
Author(s):  
Thomas L. Mote ◽  
Mark R. Anderson

AbstractA simple microwave-emission model is used to simulate 37 GHz brightness temperatures associated with snowpack-melt conditions for locations across the Greenland ice sheet. The simulated values are utilized as threshold values and compared to daily, gridded SMMR and SSM/I passive-microwave data, in order to reveal regions experiencing melt. The spatial extent of the area classified as melting is examined on a daily, monthly and seasonal (May-August) basis for 1979–91. The typical seasonal cycle of melt coverage shows melt beginning in late April, a rapid increase in the melting area from mid-May to mid-July, a rapid decrease in melt extent from late July through mid-August, and cessation of melt in late September. Seasonal averages of the daily melt extents demonstrate an apparent increase in melt coverage over the 13 year period of approximately 3.8% annually (significant at the 95% confidence interval). This increase is dominated by statistically significant positive trends in melt coverage during July and August in the west and southwest of the ice sheet. We find that a linear correlation between microwave-derived melt extent and a surface measure of ablation rate is significant in June and July but not August, so caution must be exercised in using the microwave-derived melt extents in August. Nevertheless, knowledge of the variability of snowpack melt on the Greenland ice sheet as derived from microwave data should prove useful in detecting climate change in the Arctic and examining the impact of climate change on the ice sheet.


2020 ◽  
Vol 14 (2) ◽  
pp. 521-538 ◽  
Author(s):  
Andrew J. Tedstone ◽  
Joseph M. Cook ◽  
Christopher J. Williamson ◽  
Stefan Hofer ◽  
Jenine McCutcheon ◽  
...  

Abstract. One of the primary controls upon the melting of the Greenland Ice Sheet (GrIS) is albedo, a measure of how much solar radiation that hits a surface is reflected without being absorbed. Lower-albedo snow and ice surfaces therefore warm more quickly. There is a major difference in the albedo of snow-covered versus bare-ice surfaces, but observations also show that there is substantial spatio-temporal variability of up to ∼0.4 in bare-ice albedo. Variability in bare-ice albedo has been attributed to a number of processes including the accumulation of light-absorbing impurities (LAIs) and the changing physical properties of the near-surface ice. However, the combined impact of these processes upon albedo remains poorly constrained. Here we use field observations to show that pigmented glacier algae are ubiquitous and cause surface darkening both within and outside the south-west GrIS “dark zone” but that other factors including modification of the ice surface by algal bloom presence, surface topography and weathering crust state are also important in determining patterns of daily albedo variability. We further use observations from an unmanned aerial system (UAS) to examine the scale gap in albedo between ground versus remotely sensed measurements made by Sentinel-2 (S-2) and MODIS. S-2 observations provide a highly conservative estimate of algal bloom presence because algal blooms occur in patches much smaller than the ground resolution of S-2 data. Nevertheless, the bare-ice albedo distribution at the scale of 20 m×20 m S-2 pixels is generally unimodal and unskewed. Conversely, bare-ice surfaces have a left-skewed albedo distribution at MODIS MOD10A1 scales. Thus, when MOD10A1 observations are used as input to energy balance modelling, meltwater production can be underestimated by ∼2 %. Our study highlights that (1) the impact of the weathering crust state is of similar importance to the direct darkening role of light-absorbing impurities upon ice albedo and (2) there is a spatial-scale dependency in albedo measurement which reduces detection of real changes at coarser resolutions.


Sign in / Sign up

Export Citation Format

Share Document