melt duration
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

Author(s):  
Wenxuan Zhang ◽  
Wenyuan Hou ◽  
Luc Deike ◽  
Craig Arnold

Abstract The periodic undulation of a molten track's height profile in laser-based powder bed fusion of metals (PBF-LB/M) is a commonly observed phenomena that can cause defects and building failure during the manufacturing process. However a quantitative analysis of such instabilities has not been fully established and so here we used Rayleigh-Plateau theory to determine the stability of a single molten track in PBF-LB/M and tested it with various processing conditions by changing laser power and beam shape. The analysis discovered that normalized enthalpy, which relates to energy input density, determines whether a molten track is initially unstable and if so, the growth rate for the instability. Additionally, whether the growth rate ultimately yields significant undulation depends on the melt duration, estimated by dwell time in our experiment.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Terri Cook

The first use of Advanced Scatterometer radar data to determine melt duration on an Antarctic ice shelf shows the season has decreased by up to 2 days per year during the extended 21st century record.


2018 ◽  
Vol 5 (10) ◽  
pp. 578-591 ◽  
Author(s):  
Suzanne Louise Bevan ◽  
Adrian John Luckman ◽  
Peter Kuipers Munneke ◽  
Bryn Hubbard ◽  
Bernd Kulessa ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Zhankai Wu ◽  
Xingdong Wang

This study was based on the daily sea ice concentration data from the National Snow and Ice Data Center (Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA) from 1998 to 2017. The Antarctic sea ice was analysed from the total sea ice area (SIA), first year ice area, first year ice melt duration, and multiyear ice area. On a temporal scale, the changes in sea ice parameters were studied over the whole 20 years and for two 10-year periods. The results showed that the total SIA increased by 0.0083×106 km2 yr-1 (+2.07% dec-1) between 1998 and 2017. However, the total SIA in the two 10-year periods showed opposite trends, in which the total SIA increased by 0.026×106 km2 yr-1 between 1998 and 2007 and decreased by 0.0707×106 km2 yr-1 from 2008 to 2017. The first year ice area increased by 0.0059×106 km2 yr-1 and the melt duration decreased by 0.0908 days yr-1 between 1998 and 2017. The multiyear ice area increased by 0.0154×106 km2 yr-1 from 1998 to 2017, and the increase in the last 10 years was about 12.1% more than that in the first 10 years. On a spatial scale, the Entire Antarctica was divided into two areas, namely West Antarctica (WA) and East Antarctica (EA), according to the spatial change rate of sea ice concentration. The results showed that WA had clear warming in recent years; the total sea ice and multiyear ice areas showed a decreasing trend; multiyear ice area sharply decreased and reached the lowest value in 2017, and accounted for only about 10.1% of the 20-year average. However, the total SIA and multiyear ice area all showed an increased trend in EA, in which the multiyear ice area increased by 0.0478×106 km2 yr-1. Therefore, Antarctic sea ice presented an increasing trend, but there were different trends in WA and EA. Different sea ice parameters in WA and EA showed an opposite trend from 1998 to 2007. However, the total SIA, first year ice area, and multiyear ice area all showed a decreasing trend from 2008-2017, especially the total sea ice and first year ice, which changed almost the same in 2014-2017. In summary, although the Antarctic sea ice has increased slightly over time, it has shown a decreasing trend in recent years.


2018 ◽  
Author(s):  
Zhankai Wu ◽  
Xingdong Wang

This study was based on the daily sea ice concentration data from the National Snow and Ice Data Center (Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA) from 1998 to 2017. The Antarctic sea ice was analysed from the total sea ice area (SIA), first year ice area, first year ice melt duration, and multiyear ice area. On a temporal scale, the changes in sea ice parameters were studied over the whole 20 years and for two 10-year periods. The results showed that the total SIA increased by 0.0083×106 km2 yr-1 (+2.07% dec-1) between 1998 and 2017. However, the total SIA in the two 10-year periods showed opposite trends, in which the total SIA increased by 0.026×106 km2 yr-1 between 1998 and 2007 and decreased by 0.0707×106 km2 yr-1 from 2008 to 2017. The first year ice area increased by 0.0059×106 km2 yr-1 and the melt duration decreased by 0.0908 days yr-1 between 1998 and 2017. The multiyear ice area increased by 0.0154×106 km2 yr-1 from 1998 to 2017, and the increase in the last 10 years was about 12.1% more than that in the first 10 years. On a spatial scale, the Entire Antarctica was divided into two areas, namely West Antarctica (WA) and East Antarctica (EA), according to the spatial change rate of sea ice concentration. The results showed that WA had clear warming in recent years; the total sea ice and multiyear ice areas showed a decreasing trend; multiyear ice area sharply decreased and reached the lowest value in 2017, and accounted for only about 10.1% of the 20-year average. However, the total SIA and multiyear ice area all showed an increased trend in EA, in which the multiyear ice area increased by 0.0478×106 km2 yr-1. Therefore, Antarctic sea ice presented an increasing trend, but there were different trends in WA and EA. Different sea ice parameters in WA and EA showed an opposite trend from 1998 to 2007. However, the total SIA, first year ice area, and multiyear ice area all showed a decreasing trend from 2008-2017, especially the total sea ice and first year ice, which changed almost the same in 2014-2017. In summary, although the Antarctic sea ice has increased slightly over time, it has shown a decreasing trend in recent years.


2014 ◽  
Vol 26 (6) ◽  
pp. 625-635 ◽  
Author(s):  
Adrian Luckman ◽  
Andrew Elvidge ◽  
Daniela Jansen ◽  
Bernd Kulessa ◽  
Peter Kuipers Munneke ◽  
...  

AbstractA common precursor to ice shelf disintegration, most notably that of Larsen B Ice Shelf, is unusually intense or prolonged surface melt and the presence of surface standing water. However, there has been little research into detailed patterns of melt on ice shelves or the nature of summer melt ponds. We investigated surface melt on Larsen C Ice Shelf at high resolution using Envisat advanced synthetic aperture radar (ASAR) data and explored melt ponds in a range of satellite images. The improved spatial resolution of SAR over alternative approaches revealed anomalously long melt duration in western inlets. Meteorological modelling explained this pattern by föhn winds which were common in this region. Melt ponds are difficult to detect using optical imagery because cloud-free conditions are rare in this region and ponds quickly freeze over, but can be monitored using SAR in all weather conditions. Melt ponds up to tens of kilometres in length were common in Cabinet Inlet, where melt duration was most prolonged. The pattern of melt explains the previously observed distribution of ice shelf densification, which in parts had reached levels that preceded the collapse of Larsen B Ice Shelf, suggesting a potential role for föhn winds in promoting unstable conditions on ice shelves.


2012 ◽  
Vol 25 (17) ◽  
pp. 6015-6035 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston

Abstract Runoff magnitudes, the spatial patterns from individual Greenland catchments, and their changes through time (1960–2010) were simulated in an effort to understand runoff variations to adjacent seas and to illustrate the capability of SnowModel (a snow and ice evolution model) and HydroFlow (a runoff routing model) to link variations in terrestrial runoff with ocean processes and other components of Earth’s climate system. Significant increases in air temperature, net precipitation, and local surface runoff lead to enhanced and statistically significant Greenland ice sheet (GrIS) surface mass balance (SMB) loss. Total Greenland runoff to the surrounding oceans increased 30%, averaging 481 ± 85 km3 yr−1. Averaged over the period, 69% of the runoff to the surrounding seas originated from the GrIS and 31% came from outside the GrIS from rain and melting glaciers and ice caps. The runoff increase from the GrIS was due to an 87% increase in melt extent, 18% from increases in melt duration, and a 5% decrease in melt rates (87% + 18% − 5% = 100%). In contrast, the runoff increase from the land area surrounding the GrIS was due to a 0% change in melt extent, a 108% increase in melt duration, and an 8% decrease in melt rate. In general, years with positive Atlantic multidecadal oscillation (AMO) index equaled years with relatively high Greenland runoff volume and vice versa. Regionally, runoff was greater from western than eastern Greenland. Since 1960, the data showed pronounced runoff increases in west Greenland, with the greatest increase occurring in the southwest and the lowest increase in the northwest.


2012 ◽  
Vol 6 (2) ◽  
pp. 235-254 ◽  
Author(s):  
K.-K. Kang ◽  
C. R. Duguay ◽  
S. E. L. Howell

Abstract. Time series of brightness temperatures (TB) from the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) are examined to determine ice phenology variables on the two largest lakes of northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL). TB measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenology variables on GBL and GSL over seven ice seasons (2002–2009). Analysis of the spatio-temporal patterns of each variable at the pixel level reveals that: (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for several ice phenology variables derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes.


2012 ◽  
Vol 6 (1) ◽  
pp. 715-735
Author(s):  
K. A. Semmens ◽  
J. M. Ramage

Abstract. Brightness temperature (Tb) data from the Special Sensor Microwave Imager (SSM/I) 37 V-GHz frequency provides a time series from 1988 to 2010 that enables the assessment of snowmelt timing trends (onset, end of melt-refreeze, and duration) for the Yukon River Basin. Tb and diurnal amplitude variation (DAV) thresholds determine dates of melt onset and melt-freeze end (end of high DAV), defined as the first date when thresholds are met for more than three of five consecutive days. Temporal and spatial trends in melt onset and end of melt-refreeze date are determined with varying time period intervals and for each sub-basin and elevation class. Earlier melt onset trends are found in the highest elevations and northernmost sub-basins (Porcupine, Chandalar, and Koyukuk Rivers). Significant later (>0.75 d yr−1) end of melt-refreeze and longer melt duration trends are found in a majority of the sub-basins. Moving interval trends suggest interannual variability within the time series and a power spectrum analysis reveals peak frequencies and periods of 5–7 and ~11 years, possibly related to El Nino- Southern Oscillation and the solar cycle, respectively. Latitude and elevation display the dominant controls on timing variance and spring solar flux is highly correlated with melt timing in middle elevations.


2012 ◽  
Vol 713 ◽  
pp. 127-132
Author(s):  
Eneko Ukar ◽  
Aitzol Lamikiz ◽  
S. Martínez ◽  
Luis Norberto López de Lacalle

In laser surface treatment the laser beam is used as energy source for surface modification improving aspects such as mechanical properties, tribology or surface texture. Modeling tools have special interest in processes with many variables, like laser surface processing, in order to minimize the tryout testing to find the optimal process parameters. The work presented here focuses on the prediction of the final topography in laser polishing process. By FFT analysis of the surface profile it is possible to get the different frequency components of the initial topography. On the other hand, thermal field simulation was carried out to evaluate the melt duration. Matching this with the spatial frequency damping during process, the reconstruction of the processed topography was obtained.


Sign in / Sign up

Export Citation Format

Share Document