Design and implementation of an inductive learning control system for a manipulator gripper

Robotica ◽  
1994 ◽  
Vol 12 (2) ◽  
pp. 187-192
Author(s):  
D. Fontaine ◽  
P. Bidaud

SUMMARYThis paper presents an advanced control system for an active compliant device. This device, a manipulator-gripper, was designed to achieve stable grasp of objects with various shapes and to impart compliant fine motions to the grasped object. In the control system of this end-effector, we introduced autonomous reasoning capabilities. Fine motion strategies, needed for mating or grasping, use inductive learning from experiments to achieve uncertainty and error recovery. An overview of the articulated gripper's structure is provided for a better understanding of the programming environment we propose. For solving the problem of synthesis programs for fine motion planning we introduce declarative programming facilities in the controller through a time-sensitive mini-prolog. The paper gives some details on the implementation of this mini-prolog. We develop a heuristic procedure to obtain an implicit local model of contacts in complex assembly tasks. Finally, a specific example of this approach – a peg-in-hole operation– –is outlined.

Author(s):  
Samuel Davies ◽  
Sivagunalan Sivanathan ◽  
Ewen Constant ◽  
Kary Thanapalan

AbstractThis paper describes the design of an advanced solar tracking system development that can be deployed for a range of applications. The work focused on the design and implementation of an advanced solar tracking system that follow the trajectory of the sun’s path to maximise the power capacity generated by the solar panel. The design concept focussed on reliability, cost effectiveness, and scalability. System performance is of course a key issue and is at the heart of influencing the hardware, software and mechanical design. The result ensured a better system performance achieved. Stability issues were also addressed, in relation to optimisation and reliability. The paper details the physical tracker device developed as a prototype, as well as the proposed advanced control system for optimising the tracking.


2014 ◽  
Vol 27 (8) ◽  
pp. 750-758 ◽  
Author(s):  
Wenjian Lin ◽  
Hang Zhong ◽  
Fuhai Li ◽  
Xianghui Xiao ◽  
Xinran Qian

ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 434-439 ◽  
Author(s):  
Dangyang JIE ◽  
Fenglei NI ◽  
Yisong TAN ◽  
Hong LIU ◽  
Hegao CAI

2021 ◽  
Vol 57 (1) ◽  
pp. 528-536
Author(s):  
Ghunter Paulo Viajante ◽  
Eric Nery Chaves ◽  
Luis Carlos Miranda ◽  
Marcos Antonio A. de Freitas ◽  
Carlos Antunes de Queiroz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document