scholarly journals Development of an Advanced Solar Tracking Energy System

Author(s):  
Samuel Davies ◽  
Sivagunalan Sivanathan ◽  
Ewen Constant ◽  
Kary Thanapalan

AbstractThis paper describes the design of an advanced solar tracking system development that can be deployed for a range of applications. The work focused on the design and implementation of an advanced solar tracking system that follow the trajectory of the sun’s path to maximise the power capacity generated by the solar panel. The design concept focussed on reliability, cost effectiveness, and scalability. System performance is of course a key issue and is at the heart of influencing the hardware, software and mechanical design. The result ensured a better system performance achieved. Stability issues were also addressed, in relation to optimisation and reliability. The paper details the physical tracker device developed as a prototype, as well as the proposed advanced control system for optimising the tracking.

2018 ◽  
Vol 57 ◽  
pp. 02003 ◽  
Author(s):  
Wilson E. Sánchez ◽  
Mario P. Jiménez ◽  
Carlos A. Mantilla ◽  
José M. Toro ◽  
Miguel A. Villa ◽  
...  

This investigation describes the design and implementation of a parabolic trough solar collector (PCC) with solar tracking to obtain hot water. The solar radiation available at the installation site is analyzed, followed by the design and construction of the mechanical system, making a series of calculations for the dimensioning of the reflective base, and a stress and deflection analysis of the structure is performed to verify the feasibility of the design in the ANSYS software. An analysis of the solar tracking system is performed, which is dimensioned from the PCC structure to determine the type of solar tracker to implement; The charging system, consisting of a solar panel and a battery, is dimensioned for the power supply of the tracking system; as a last point, for the heating system is determined the amount of water that is able to heat the system from the energy analysis at the installation site, the heating system is based on placing a Heat Pipe, in the focus of the parabola to receive the solar rays reflected by the collector and heat exchange to the water from a thermowell where the heat pipe condenser enters, finally tests are carried out in the PCC implemented obtaining a global efficiency of 16.37%.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


Author(s):  
Allan Soon Chan Roong ◽  
Shin-Horng Chong

This paper presents the design and development of a laboratory-scale single axis solar tracking system. The chronological method was implemented into the system because it has high accuracy and can save more energy as compared to other types of solar tracking system. The laboratory-scale single axis solar tracking system can be used to identify the suitable and safe workspace for the installation of the actual solar tracking system plant. Besides, the validity of the laboratory-scale single axis solar tracking system was examined experimentally. The angle of rotation, per hour is preferable to be implemented into the designed laboratory-scale single axis sun tracking system due to the high performance ratio which is 0.83 and can save the energy up  to 25% during sunny days.


Robotica ◽  
1994 ◽  
Vol 12 (2) ◽  
pp. 187-192
Author(s):  
D. Fontaine ◽  
P. Bidaud

SUMMARYThis paper presents an advanced control system for an active compliant device. This device, a manipulator-gripper, was designed to achieve stable grasp of objects with various shapes and to impart compliant fine motions to the grasped object. In the control system of this end-effector, we introduced autonomous reasoning capabilities. Fine motion strategies, needed for mating or grasping, use inductive learning from experiments to achieve uncertainty and error recovery. An overview of the articulated gripper's structure is provided for a better understanding of the programming environment we propose. For solving the problem of synthesis programs for fine motion planning we introduce declarative programming facilities in the controller through a time-sensitive mini-prolog. The paper gives some details on the implementation of this mini-prolog. We develop a heuristic procedure to obtain an implicit local model of contacts in complex assembly tasks. Finally, a specific example of this approach – a peg-in-hole operation– –is outlined.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012016
Author(s):  
Wen-Lan Wang ◽  
Xiong-Huai Bai

Abstract The Inner Mongolia has abundant solar energy and electricity resources. Because of the long distance between cities, transmission lines are too long, making it difficult to check lines. In order to solve the problems existing in the inspection work, this paper studies a kind of outdoor inspection vehicle using solar energy, the energy system of the inspection vehicle can independently complete the charge and discharge, so as to realize the inspection task. This paper focuses on the energy autonomy of the on-site inspection vehicle for solar energy. According to the design requirements of the inspection vehicle, appropriate parts are selected to build an energy autonomy inspection system for the inspection vehicle. Then the solar tracking algorithm and maximum power tracking control algorithm are used to improve the conversion rate of solar panels and achieve fast charging. Finally, the hardware and software of the solar controller are designed, and the corresponding functions are debugged.


Author(s):  
Hernando González-Acevedo ◽  
Yecid Muñoz-Maldonado ◽  
Adalberto Ospino-Castro ◽  
Julian Serrano ◽  
Anthony Atencio ◽  
...  

This paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the power supplied by the tracker with the power supplied by static solar panel of the same characteristics. The performance is initially simulated using Pv-Syst software, and later validated with the data obtained by the interface. As a result, the use of the solar tracker increases the power delivered by a minimum of 19%, and it can go as high as 47.84%, with an average in increase in power of 19.5% in the monthly energy production. This experimental result was compared with the simulation by Pv-Syst software and shows a difference of only 2.5%, thus validating the reliability of the simulation. This behavior pattern coincides with previous studies carried out for equatorial latitudes.


2021 ◽  
pp. 193-204
Author(s):  
Marie Pascaline Sarr ◽  
Ababacar Thiam ◽  
Biram Dieng ◽  
El Hadji Ibrahima Cisse

Sign in / Sign up

Export Citation Format

Share Document