Multi-level control of zero-moment point-based humanoid biped robots: a review

Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2440-2466 ◽  
Author(s):  
Hayder F. N. Al-Shuka ◽  
B. Corves ◽  
Wen-Hong Zhu ◽  
B. Vanderborght

SUMMARYResearchers dream of developing autonomous humanoid robots which behave/walk like a human being. Biped robots, although complex, have the greatest potential for use in human-centred environments such as the home or office. Studying biped robots is also important for understanding human locomotion and improving control strategies for prosthetic and orthotic limbs. Control systems of humans walking in cluttered environments are complex, however, and may involve multiple local controllers and commands from the cerebellum. Although biped robots have been of interest over the last four decades, no unified stability/balance criterion adopted for stabilization of miscellaneous walking/running modes of biped robots has so far been available. The literature is scattered and it is difficult to construct a unified background for the balance strategies of biped motion. The zero-moment point (ZMP) criterion, however, is a conservative indicator of stabilized motion for a class of biped robots. Therefore, we offer a systematic presentation of multi-level balance controllers for stabilization and balance recovery of ZMP-based humanoid robots.

2019 ◽  
Vol 7 (4) ◽  
pp. 1462-1488 ◽  
Author(s):  
Hayder F. N. Al-Shuka ◽  
Mohammad H. Rahman ◽  
Steffen Leonhardt ◽  
Ileana Ciobanu ◽  
Mihai Berteanu

Robotica ◽  
2000 ◽  
Vol 18 (6) ◽  
pp. 651-657 ◽  
Author(s):  
K. Mitobe ◽  
G. Capi ◽  
Y. Nasu

In this paper, a new application of the ZMP (Zero Moment Point) control law is presented. The objective of this control method is to obtain a smooth and soft motion based on a real-time control. In the controller, the ZMP is treated as an actuating signal. The coordinates of the robot body are fed back to obtain its position. The proposed control method was applied on two different biped robots, and its validity is verified experimentally.


Robotica ◽  
2013 ◽  
Vol 32 (6) ◽  
pp. 907-934 ◽  
Author(s):  
Hayder F. N. Al-Shuka ◽  
F. Allmendinger ◽  
B. Corves ◽  
Wen-Hong Zhu

SUMMARYBiped robots have gained much attention for decades. A variety of researches have been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. This paper discusses the main challenges encountered in the design of biped robots, such as modeling, stability and their walking patterns. The subject is difficult to deal with because the biped mechanism intervenes with mechanics, control, electronics and artificial intelligence. In this paper, we collect and introduce a systematic discussion of modeling, walking pattern generators and stability for a biped robot.


2010 ◽  
Vol 118-120 ◽  
pp. 670-674
Author(s):  
Pai Shan Pa ◽  
Jinn Bao Jou

The design of the biped toy robot in this study, presents a brand new concept compared to that of the conventional mechanical biped robots on the market. These conventional mechanical products rely mainly on a large sole area to stabilize the wobbling movement during walking. In this design walking stability is not achieved by large sole areas, but by having more degrees of freedom and automatically shifting the center of gravity as the robot walks. A single motor is used to drive the biped toy robot trunk so that the center of gravity is automatically shifted to achieve walking stability. The two feet are driven by four connecting rods for striding and leg-lifting action. More particularly, an equal parallel crank mechanism is provided that uses a single motor to drive the connecting rods, thereby swinging the center of gravity of the toy robot in time with striding frequency. In addition, the concept of the zero moment point is utilized in the shifting of the center of gravity allowing the biped robot to lift its legs, change step, and move forward in balance. This study also discusses the use of the four connecting rods, and the shifting of the center of gravity of the robot, as an alternative to the servomotors commonly used in conventional robots which are bulky, expensive and hard to control.


Sign in / Sign up

Export Citation Format

Share Document