The putative reward function of equine stereotypic behaviour

2004 ◽  
Vol 32 ◽  
pp. 67-78
Author(s):  
A J Hemmings ◽  
S D McBride ◽  
N C Smith

AbstractA review of physiology and behaviour–based studies on the function of stereotypic behaviour indicates contradiction and inconsistency within the literature. By considering appropriate neurochemical data alongside an existing model of motivation (Hughes and Duncan, 1988), a greater understanding of the function of stereotypy may be gained. The Hughes and Duncan model (1988), described stereotypies as highly motivated appetitive behaviours performed repeatedly in an environment where consummatory goals are denied. Moreover, appetitive behaviours activate reward circuitry such as the ventral tegmental area and nucleus accumbens and are thus considered to have a reward value associated with their performance (Carr, 2002; Jones et al., 1990). Stress induced sensitisation of reward circuitry may result in appetitive ‘stereotypies’ having increased reward value, perhaps becoming consummatory in their own right. In such a scenario, stereotypic behaviour could function as a coping tool, allowing the animal to counter the effects of an aversive environment.

2018 ◽  
Vol 50 (3) ◽  
pp. 2146-2155 ◽  
Author(s):  
Lindsay Naef ◽  
Lauren Seabrook ◽  
Jeff Hsiao ◽  
Calvin Li ◽  
Stephanie L. Borgland

Author(s):  
Imre Kalló ◽  
Azar Omrani ◽  
Frank J. Meye ◽  
Han de Jong ◽  
Zsolt Liposits ◽  
...  

AbstractOrexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.


Sign in / Sign up

Export Citation Format

Share Document