Reliabilities of Consecutive-2 Graphs

1987 ◽  
Vol 1 (3) ◽  
pp. 293-298 ◽  
Author(s):  
D.Z. Du ◽  
F. K. Hwang

A consecutive-2 graph is a graph where each vertex is associated with a failure probability and the graph is considered failed if any two adjacent vertices both fail. Recently, the problem of computing reliability for general consecutive-2 graph was shown to be #P-complete while polynomial algorithms exist for trees. In this paper, we give a linear time algorithm for a class of graphs including forests and cycles.For a given set of failure probabilities qi, the assignment of qi to the vertices of a given graph is optimal if it maximizes the reliability of that graph. It is known that optimal assignments for trees require messy computations while linear algorithms exist for lines and stars. In this paper, we prove that the optimal reliability of any n−tree is bounded between those of an n−line and an n−star.

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


2012 ◽  
Vol 160 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Fatemeh Keshavarz-Kohjerdi ◽  
Alireza Bagheri ◽  
Asghar Asgharian-Sardroud

2021 ◽  
Vol 96 ◽  
pp. 101759
Author(s):  
Christopher Johnson ◽  
Haitao Wang

Sign in / Sign up

Export Citation Format

Share Document