Stochastic comparison of parallel systems with Pareto components

Author(s):  
Sameen Naqvi ◽  
Weiyong Ding ◽  
Peng Zhao

Abstract Pareto distribution is an important distribution in extreme value theory. In this paper, we consider parallel systems with Pareto components and study the effect of heterogeneity on skewness of such systems. It is shown that, when the lifetimes of components have different shape parameters, the parallel system with heterogeneous Pareto component lifetimes is more skewed than the system with independent and identically distributed Pareto components. However, for the case when the lifetimes of components have different scale parameters, the result gets reversed in the sense of star ordering. We also establish the relation between star ordering and dispersive ordering by extending the result of Deshpande and Kochar [(1983). Dispersive ordering is the same as tail ordering. Advances in Applied Probability 15(3): 686–687] from support $(0, \infty )$ to general supports $(a, \infty )$ , $a > 0$ . As a consequence, we obtain some new results on dispersion of order statistics from heterogeneous Pareto samples with respect to dispersive ordering.

2019 ◽  
Vol 42 (2) ◽  
pp. 143-166 ◽  
Author(s):  
Renato Santos Silva ◽  
Fernando Ferraz Nascimento

Extreme Value Theory (EVT) is an important tool to predict efficient gains and losses. Its main areas of analyses are economic and environmental. Initially, for that form of event, it was developed the use of patterns of parametric distribution such as Normal and Gamma. However, economic and environmental data presents, in most cases, a heavy-tailed distribution, in contrast to those distributions. Thus, it was faced a great difficult to frame extreme events. Furthermore, it was almost impossible to use conventional models, making predictions about non-observed events, which exceed the maximum of observations. In some situations EVT is used to analyse only the maximum of some dataset, which provide few observations, and in those cases it is more effective to use the r largest-order statistics. This paper aims to propose Bayesian estimators' for parameters of the r largest-order statistics. During the research, it was used Monte Carlo simulation to analyze the data, and it was observed some properties of those estimators, such as mean, variance, bias and Root Mean Square Error (RMSE). The estimation of the parameters provided inference for its parameters and return levels. This paper also shows a procedure to the choice of the r-optimal to the r largest-order statistics, based on the Bayesian approach applying Markov chains Monte Carlo (MCMC). Simulation results reveal that the Bayesian approach has a similar performance to the Maximum Likelihood Estimation, and the applications were developed using the Bayesian approach and showed a gain in accurary compared with otherestimators.


2007 ◽  
Vol 34 (4) ◽  
pp. 513-524 ◽  
Author(s):  
M D Pandey ◽  
Y An

The design wind pressures specified in the 2005 National Building Code of Canada (NBCC) have been derived from the Gumbel distribution fitted to annual maximum wind speed data collected up to early 1990s. The statistical estimates of the annual maxima method are affected by a relatively large sampling variability, since the method considers a fairly small subset of available wind speed records. Advanced statistical methods have emerged in recent years with the purpose of reducing both sampling and model uncertainties associated with extreme quantile estimates. The two most notable methods are the peaks-over-threshold (POT) and annually r largest order statistics (r-LOS), which extend the data set by including additional maxima observed in wind speed time series. The objective of the paper is to explore the use of advanced extreme value theory for updating the design wind speed estimates specified in the Canadian building design code. The paper re-examines the NBCC method for design wind speed estimation and presents the analysis of the latest Canadian wind speed data by POT, r-LOS, and annual maxima methods. The paper concludes that r-LOS method is an effective alternative for the estimation of extreme design wind speed.Key words: wind speed, extreme value theory, order statistics, return period, maximum likelihood method, peaks-over-threshold method, generalized extreme value distribution, Gumbel distribution, generalized Pareto distribution.


Author(s):  
Audrene Edwards ◽  
Kumer Das

The study of extremes has attracted the attention of scientists, engineers, actuaries, policy makers, and statisticians for many years. Extreme value theory (EVT) deals with the extreme deviations from the median of probability distributions and is used to study rare but extreme events. EVT’s main results characterize the distribution of the sample maximum or the distribution of values above a given threshold. In this study, EVT has been used to construct a model on the extreme and rare earthquakes that have happened in the United States from 1700 to 2011.The primary goal of fitting such a model is to estimate the amount of losses due to those extreme events and the probabilities of such events. Several diagnostic methods (for example, QQ plot and Mean Excess Plot) have been used to justify that the data set follows generalized Pareto distribution (GPD). Three estimation techniques have been employed to estimate parameters. The consistency and reliability of estimated parameters have been observed for different threshold values. The purpose of this study is manifold: first, we investigate whether the data set follows GPD, by using graphical interpretation and hypothesis testing. Second, we estimate GPD parameters using three different estimation techniques. Third, we compare consistency and reliability of estimated parameters for different threshold values. Last, we investigate the bias of estimated parameters using a simulation study. The result is particularly useful because it can be used in many applications (for example, disaster management, engineering design, insurance industry, hydrology, ocean engineering, and traffic management) with a minimal set of assumptions about the true underlying distribution of a data set. KEYWORDS: Extreme Value Theory; QQ Plot; Mean Excess Plot; Mean Residual Plot; Peak Over Threshold; Generalized Pareto Distribution; Maximum Likelihood Method; Method of Moments; Probability-Weighted Moments; Shapiro-Wilk test; Anderson- Darling Test


2018 ◽  
Vol 14 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Daniel T Gomes ◽  
Lígia Henriques-Rodrigues

The International Swimming Federation has developed a points system that allows comparisons of results between different events. Such system is important for several reasons, since it is used as a criterion to rank swimmers in awards and selection procedures of national teams. The points system is based entirely on the world record of the correspondent event. Since it is based on only one observation, this work aims to suggest a new system, based on the probability distribution of the best performances in each event. Using extreme value theory, such distribution, under certain conditions, converges to a generalized Pareto distribution. The new performance index, based on the peaks over threshold methodology, is obtained based on the exceedance probabilities correspondent to the swimmers’ times that exceed a given threshold. We work with 17 officially recognized events in 50 m pool, for each women and men, and considered all-time rankings for all events until 31 December 2016. A study on the adequacy of the proposed generalized Pareto distribution index and a comparison between the performances of Usain Bolt and Michael Phelps are also conducted.


Sign in / Sign up

Export Citation Format

Share Document