The lateral force on a keel and rudder

Author(s):  
S. D. Daymond ◽  
L. Rosenhead

The following theoretical investigation of the two-dimensional flow of an inviscid fluid past a keel and rudder, and of the consequent lateral force, follows experiments performed by Prof. T. B. Abell in the Department of Naval Architecture of the University of Liverpool, and we wish to acknowledge our indebtedness to him for the information given in many discussions.

1982 ◽  
Vol 49 (2) ◽  
pp. 444-446
Author(s):  
M. K. Huang

On the basis of the assumption of incompressible inviscid fluid, a linearized solution has been derived for the two-dimensional flow over an inlet of general form. The theory can be used to estimate the external drag of the inlets with sharp lips at subsonic speeds.


1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

Author(s):  
Gabriel Machado dos Santos ◽  
Ítalo Augusto Magalhães de Ávila ◽  
Hélio Ribeiro Neto ◽  
João Marcelo Vedovoto

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


1951 ◽  
Vol 2 (4) ◽  
pp. 254-271 ◽  
Author(s):  
L. G. Whitehead ◽  
L. Y. Wu ◽  
M. H. L. Waters

SummmaryA method of design is given for wind tunnel contractions for two-dimensional flow and for flow with axial symmetry. The two-dimensional designs are based on a boundary chosen in the hodograph plane for which the flow is found by the method of images. The three-dimensional method uses the velocity potential and the stream function of the two-dimensional flow as independent variables and the equation for the three-dimensional stream function is solved approximately. The accuracy of the approximate method is checked by comparison with a solution obtained by Southwell's relaxation method.In both the two and the three-dimensional designs the curved wall is of finite length with parallel sections upstream and downstream. The effects of the parallel parts of the channel on the rise of pressure near the wall at the start of the contraction and on the velocity distribution across the working section can therefore be estimated.


Sign in / Sign up

Export Citation Format

Share Document