air resistance
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 92)

H-INDEX

21
(FIVE YEARS 3)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Quim Tarrés ◽  
Roberto Aguado ◽  
M. Àngels Pèlach ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar

While the potential of cellulose nanofibers to enhance the mechanical and barrier properties of paper is well-known, there are many uncertainties with respect to how to apply them. In this study, we use not only bulk addition of micro-/nanofibers and bar coating with oxidized nanofibers, but also a combination of these and, as a novel element, electrospray deposition of nanofiber dispersions. Characterization involved testing the strength of uncoated and coated paper sheets, their resistance to air flow, their Bendtsen roughness, and their apparent density, plus visualization of their surface and cross-sections by scanning electron microscopy. As expected, bulk addition to the unrefined pulp was sufficient to attain substantial strengthening, but this enhancement was limited to approximately 124%. Following this, surface addition by bar coating improved air resistance, but not strength, since, as applying nanocellulose at high consistency was technically unfeasible, this was performed several times with detrimental drying stages in between. However, replacing bar coating with electrospraying helped us overcome these apparent limitations, producing enhancements in both barrier and tensile properties. It is concluded that electrosprayed nanofibers, owing to their uniform deposition and favorable interactions, operate as an effective binder between fibers (and/or fines).


Author(s):  
M. Sorokatiy ◽  
M. Voytovych ◽  
L. Velychko ◽  
O. Moskalova

This article indicates the scope of the formula for determining the magnitude of the lateral displacement of the projectile under the action of crosswind, which is used in the compilation of firing tables. This formula is valid under the following conditions: the force of frontal air resistance to the motion of the projectile is proportional to the its velocity squared; wind speed components are much smaller than the horizontal component of projectile velocity; the projectile velocity projections on the Oy and Oz axes are much smaller than the projections on the Ox axis; the dimensionless coefficient of resistance and the magnitude of the crosswind are constant values. However, in reality, the force of frontal air resistance to the motion of the projectile is only sometimes proportional to the its velocity squared; the projectile velocity projections on the Oz axis may be are much smaller than the projections on the Ox axis and may even be greater than it; the coefficient of resistance is depends on the value of the Makh number, so it can be considered constant only when shooting at short distances. The authors propose a mathematical model for determining the magnitude of the lateral displacement of the projectile under the action of crosswinds. It is believed that the force of the crosswind on the projectile depends on the following factors: air density; the maximum area of the longitudinal section of the projectile; the difference between the value of the lateral component of the wind speed and the speed of the lateral displacement of the projectile, which is raised to a certain power. The magnitude of the values of the lateral displacement of the projectile under the action of the crosswind when shooting at short distances, determined based on the proposed mathematical model, slightly differ from the values of the lateral displacement specified in the firing tables. However, with increasing firing distance, the difference between these values is constantly increasing and the value of the lateral displacement of the projectile determined theoretically is much larger than indicated in the firing tables. In addition, in this research the influence of the tank velocity on the value of the projectile lateral displacement taking into account the action of the crosswind is studied.


Author(s):  
Linsheng Wang ◽  
Donghe Xi

Most of the vehicle cruise braking calibration algorithms only calibrate the distance, ignoring that the driver cannot control the vehicle braking in time under fatigue conditions. Therefore, an embedded CNC system is added to the vehicle cruise braking distance calibration algorithm to control the vehicle speed and prevent the vehicle from rear-end collisions. At this time, the CNC system uses incremental control to control the vehicle cruise braking. The reaction time model and braking distance calculation model under control increment are established. At the same time, air resistance and rolling resistance of cruise braking distance parameters are calculated. Cruise braking distance calibration is completed by integrating the two models, CNC system control increment, air resistance and rolling resistance parameters. The experimental analysis shows that the calibration error of the algorithm is within ±30cm and the calibration accuracy is high, which meets the practical application standard of cruise braking.


2021 ◽  
Author(s):  
Marc Landon

Abstract A convenient approximated analytic solution is proposed for the problem of the motion of a body under a resistive force, acting in the magnitude of the squared velocity of the body. This solution is an explicit function of time, that keeps a good behavior both near the initial state and far from the initial state. To obtain a general analytic solution, we firstly used a reduction principle to be able to manipulate scalar objects, and we analyzed limit behaviors, both near the initial state and far from the initial state. Secondly, we proposed an approximated analytic solution with heuristics based on the built knowledge. Finally, a robust and stable integration scheme is proposed, based on the obtained analytic solution. We compared the scheme with other standard integration schemes.


2021 ◽  
Vol 935 (1) ◽  
pp. 012030
Author(s):  
Yu Kazakov ◽  
V Medvedev ◽  
V Batmanov ◽  
V Pavlov

Abstract The disadvantage of wheeled tractors is soil compaction, slipping due to limited traction, low tangential force. Experimental studies of a tractor with incomplete circular wheel mover on stubble, sand and virgin snow showed an increase in cross-country ability, a decrease in skidding, an increase in traction, and an increase in productivity. The purpose of the study is to develop a methodology for kinematic and dynamic analysis of incompletely rounded wheel propellers with a built-in differential. The equation of motion of the wheel is obtained on the basis of two-stage overcoming by the wheel of a single threshold obstacle taking into account the longitudinal and radial stiffness of the tire, its deformation, air resistance in the tire. The main influence is provided by translational speed, wheel radius and radial stiffness, the moment of inertia of the wheel and the shoulder of the application of mass. Planetary gearbox proposed in which the shaft of the driving satellite is a bearing, while the radius of the gear is an order of magnitude smaller than the radius of the wheel. The direction of improvement of wheel mover, increasing their traction properties is justified.


2021 ◽  
Author(s):  
Xiao Jun ◽  
Zhang Wei-wei ◽  
Zhang Lin-rui ◽  
Wang Xiao-he ◽  
Geng Qiang ◽  
...  

2021 ◽  
Vol 2021 (4) ◽  
pp. 453-459
Author(s):  
A. A. Vorob’ev ◽  
◽  
Ya. S. Vatulin ◽  
D. D. Karimov ◽  
◽  
...  

Objective: To evaluate the infl uence of the parameters of current collectors of high-speed and very high-speed trains on the value of aerodynamic resistance. To study the effect of airfl ow on a pantograph aerodynamic device using SolidWorks software. Methods: A comparison of the obtained values of aerodynamic air resistance with those that were produced earlier is carried out. Results: By means of aerodynamic device, it is possible to reduce the speed of the air fl ow effecting the pantograph, to reduce the values of aerodynamic resistance and energy consumption, to extend the service life of current collectors. Practical importance: The proposed design can improve the current collection, which will reduce the load on the overhead line and the pantograph slide, and reduce the energy consumption of electric rolling stock.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuefeng Che ◽  
Mohammed Yousuf Abo Keir

Abstract To study the landing point of the curved football track, the dynamic differential equations of the football were derived in this paper. The air resistance moment was taken into account, and the rotation axis was no longer confined to the vertical direction. We compare various soccer movement regularity of different initial angular velocity 0, in turn, using standard numerical methods to solve differential equations, the selection of the initial angular velocity of three typical 0s has been carried on the detailed numerical study, and the results show that: in the same velocity V play football, corresponding to different initial angular velocity 0, the movement of football is an obvious difference. Conclusion: For the same V = 5 + 28 + 11 m/s, when no rotation Ω 0 = 0, the trajectory of the football is the usual trajectory of the projectile. When 0 = 2 − 2 + 16 rad/s, the trajectory of the football is a typical banana ball trajectory; When 0 = 13+0+0 rad/s, the trajectory of the football shows the phenomenon of left-right fluttering, similar to the fallen leaf ball.


2021 ◽  
Vol 2021 (11) ◽  
pp. 4-10
Author(s):  
Aleksandr Reutov

The work objective is to determine the parameters of the closing mechanism that provide the specified characteristics of the door movement. Research method: computer simulation of the movement of a door with a lock mechanism as a multi-mass dynamic system, taking into account the mechanical characteristics and contact interaction of the lock mechanism. Research results and novelty. Computer dynamic models of a door with a door closer and a door with a spring have been developed. The moments of the door opening force, the closing time of the door, the angular velocity of the door at the time of impact with the frame are considered as the criteria for the quality of the door closing mechanism. Formulas are obtained that determine the permissible values of stiffness and deformation of the door closer spring according to the specified moments of the door opening force. The movement of doors with a door closer and with a spring is compared. The parameters of the closing mechanism providing the specified characteristics of the door movement of the considered example are determined. It is shown that with the same values of the opening force moments, the speed of impact with the frame in the case of the door closer is less than the door with a spring. Conclusions: The developed computer dynamic models of a door with a door closer and a door with a spring make it possible to determine the characteristics of the door movement taking into account the inertial and mechanical characteristics of the door closer and spring mechanisms. The permissible values of stiffness and deformation of the door closer spring can be determined by the specified moments of the door opening force in two positions. It is established that the forces of air resistance and friction in the hinges of the door cannot create the moment of resistance necessary for smooth closing of the door without a strong impact on the frame with a limited closing time. The quality criteria that minimize the closing time and the speed of impact of the door with the frame are contradictory. The choice of optimal parameters of the door closing mechanism is possible if one of the criteria is replaced by a restriction. The developed formulas and computer models are recommended for use in the design of devices that restrict the movement of doors.


2021 ◽  
Vol 11 (22) ◽  
pp. 10604
Author(s):  
Jianlong Yin ◽  
Jing Yu ◽  
Pengfei Cao ◽  
Dongsheng Li ◽  
Xiaoyan Shen ◽  
...  

The definition of air resistance is nonuniform when analyzing the bearing capacity, stiffness, and stability of an orifice throttling aerostatic restrictor. In this study, a capillary tube similar to the inlet section of an aerostatic restrictor is used as the research object, and the Bernoulli equation under adiabatic conditions is established. Through an experiment, the pressure and temperature of the capillary tube inlet and outlet and the flow through the capillary tube are measured. Based on the air resistance definition, the empirical formula of the coefficient k is obtained, and the theoretical air resistance of the capillary path is calculated. The relative error between the theoretical air resistance and experimental air resistance is kept within 10%. The comparison results verify the accuracy of the air resistance theory and provide a basis for the subsequent establishment of a universal definition of air resistance. Subsequently, air resistance can be used to design aerostatic bearings and help improve their characteristics.


Sign in / Sign up

Export Citation Format

Share Document