Unitary representations of the unitary group

1969 ◽  
Vol 65 (2) ◽  
pp. 377-386 ◽  
Author(s):  
D. B. Hunter

It is well known that every representation of the group Un of unitary matrices of order n × n is equivalent to a unitary representation (see e.g. Little-wood (6), ch. XI). Our object in the present paper is to discuss some properties of those representations, and to construct a specific unitary representation.

2008 ◽  
Vol 19 (10) ◽  
pp. 1187-1201 ◽  
Author(s):  
MASAYASU MORIWAKI

Kazhdan, Kostant, Binegar–Zierau and Kobayashi–Ørsted constructed a distinguished infinite-dimensional irreducible unitary representation π of the indefinite orthogonal group G = O(2p, 2q) for p, q ≥ 1 with p + q > 2, which has the smallest Gelfand–Kirillov dimension 2p + 2q - 3 among all infinite-dimensional irreducible unitary representations of G and hence is called the minimal representation. We consider, for which subgroup G′ of G, the restriction π|G′ is multiplicity-free. We prove that the restriction of π to any subgroup containing the direct product group U(p1) × U(p2) × U(q) for p1, p2 ≥ 1 with p1 + p2 = p is multiplicity-free, whereas the restriction to U(p1) × U(p2) × U(q1) × U(q2) for q1, q2 ≥ 1 with q1 + q2 = q has infinite multiplicities.


2018 ◽  
Vol 28 (05) ◽  
pp. 877-903
Author(s):  
Jordan Nikkel ◽  
Yunxiang Ren

Jones introduced unitary representations for the Thompson groups [Formula: see text] and [Formula: see text] from a given subfactor planar algebra. Some interesting subgroups arise as the stabilizer of certain vector, in particular the Jones subgroups [Formula: see text] and [Formula: see text]. Golan and Sapir studied [Formula: see text] and identified it as a copy of the Thompson group [Formula: see text]. In this paper, we completely describe [Formula: see text] and show that [Formula: see text] coincides with its commensurator in [Formula: see text], implying that the corresponding unitary representation is irreducible. We also generalize the notion of the Stallings 2-core for diagram groups to [Formula: see text], showing that [Formula: see text] and [Formula: see text] are not isomorphic, but as annular diagram groups they have very similar presentations.


2003 ◽  
Vol 46 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Wai-Shun Cheung ◽  
Chi-Kwong Li

AbstractLet U(n) be the group of n × n unitary matrices. We show that if ϕ is a linear transformation sending U(n) into U(m), then m is a multiple of n, and ϕ has the formfor some V, W ∈ U(m). From this result, one easily deduces the characterization of linear operators that map U(n) into itself obtained by Marcus. Further generalization of the main theorem is also discussed.


Author(s):  
D. J. Simms

1. Introduction. The group U(H) of unitary transformations of a complex Hilbert space H, endowed with its strong operator topology, is of interest in the study of unitary representations of a topological group. The unitary transformations of H induce a group U(Ĥ) of transformations of the associated projective space Ĥ. The projective unitary group U(Ĥ) with its strong operator topology is used in the study of projective (ray) representations. U(Ĥ) is, as a group, the quotient of U(H) by the subgroup S1 of scalar multiples of the identity. In this paper we prove that the strong operator toplogy of U(Ĥ) is in fact the quotient of the strong operator topology on U(H). This is related to the fact that U(H) is a principal bundle over U(Ĥ) with fibre S.


1987 ◽  
Vol 39 (3) ◽  
pp. 612-624 ◽  
Author(s):  
Alan L. T. Paterson

One motivation for studying representation theory for the unitary group of a unital C*-algebra arises from Theoretical Physics. (In the latter connection, Segal [9] and Arveson [1] have developed a representation theory for G. Their approach is in a different direction from ours.) Another motivation for studying the representation theory of G arises out of the desire to unify the theories of amenable von Neumann algebras and amenable locally compact groups.A serious problem for such a representation theory is the absence of Haar measure on G in general.In [7], the author introduced the class RepdG of contractive unitary representations of G, the strong metric condition involved compensating for the lack of Haar measure.


10.37236/939 ◽  
2006 ◽  
Vol 14 (1) ◽  
Author(s):  
J. Novak

Let $U$ be a matrix chosen randomly, with respect to Haar measure, from the unitary group $U(d).$ For any $k \leq d,$ and any $k \times k$ submatrix $U_k$ of $U,$ we express the average value of $|{\rm Tr}(U_k)|^{2n}$ as a sum over partitions of $n$ with at most $k$ rows whose terms count certain standard and semistandard Young tableaux. We combine our formula with a variant of the Colour-Flavour Transformation of lattice gauge theory to give a combinatorial expansion of an interesting family of unitary matrix integrals. In addition, we give a simple combinatorial derivation of the moments of a single entry of a random unitary matrix, and hence deduce that the rescaled entries converge in moments to standard complex Gaussians. Our main tool is the Weingarten function for the unitary group.


1966 ◽  
Vol 18 ◽  
pp. 159-168 ◽  
Author(s):  
Thomas Sherman

Over a field of characteristic 0 certain of the simple Lie algebras have a root theory, namely those called “split” in Jacobson's book (3). We shall assume some familiarity with the subject matter of this book. Then the finite-dimensional representations of these Lie algebras have a weight theory. Our purpose here is to present a kind of weight theory for the representations of these Lie algebras when their ground field is the real numbers, and when the representation comes from a unitary group representation.


2018 ◽  
Vol 2020 (11) ◽  
pp. 3494-3520 ◽  
Author(s):  
Joseph Bernstein ◽  
Nigel Higson ◽  
Eyal Subag

Abstract We examine from an algebraic point of view some families of unitary group representations that arise in mathematical physics and are associated to contraction families of Lie groups. The contraction families of groups relate different real forms of a reductive group and are continuously parametrized, but the unitary representations are defined over a parameter subspace that includes both discrete and continuous parts. Both finite- and infinite-dimensional representations can occur, even within the same family. We shall study the simplest nontrivial examples and use the concepts of algebraic families of Harish-Chandra pairs and Harish-Chandra modules, introduced in a previous paper, together with the Jantzen filtration, to construct these families of unitary representations algebraically.


Author(s):  
Alex Bearden ◽  
Mehrdad Kalantar

Abstract We introduce and study a generalization of the notion of the Furstenberg boundary of a discrete group $\Gamma $ to the setting of a general unitary representation $\pi : \Gamma \to B(\mathcal H_\pi )$. This space, which we call the “Furstenberg–Hamana boundary” (or "FH-boundary") of the pair $(\Gamma , \pi )$, is a $\Gamma $-invariant subspace of $B(\mathcal H_\pi )$ that carries a canonical $C^{\ast }$-algebra structure. In many natural cases, including when $\pi $ is a quasi-regular representation, the Furstenberg–Hamana boundary of $\pi $ is commutative but can be noncommutative in general. We study various properties of this boundary and discuss possible applications, for example in uniqueness of certain types of traces.


Sign in / Sign up

Export Citation Format

Share Document