Osculatory properties of a certain curve in [n]

1974 ◽  
Vol 75 (3) ◽  
pp. 331-344 ◽  
Author(s):  
W. L. Edge

1. When, as will be presumed henceforward, no two of a0, a1, …, an are equal the n + 1 equationsare linearly independent; x0, x1, …, xn are homogeneous coordinates in [n] projective space of n dimensions—and the simplex of reference S is self-polar for all the quadrics.

1981 ◽  
Vol 33 (4) ◽  
pp. 885-892
Author(s):  
W. L. Edge

If x0,x1, … xn are homogeneous coordinates in [n], projective space of n dimensions, the prime (to use the standard name for a hyperplane)osculates, as θ varies, the rational normal curve C whose parametric form is [2, p. 347]Take a set of n + 2 points on C for which θ = ηjζ where ζ is any complex number andso that the ηj, for 0 ≦ j < n + 2, are the (n + 2)th roots of unity. The n + 2 primes osculating C at these points bound an (n + 2)-hedron H which varies with η, and H is polar for all the quadrics(1.1)in the sense that the polar of any vertex, common to n of its n + 2 bounding primes, contains the opposite [n + 2] common to the residual pair.


1958 ◽  
Vol 1 (3) ◽  
pp. 175-179 ◽  
Author(s):  
H. Schwerdtfeger

Let x, y be column matrices of n real homogeneous coordinates xj, yj (j = 1,..., n) representing points in (n - 1) - dimensional real projective space Pn - 1. Let A be an n × n real symmetric matrix. The equation x' Ax = 0 represents a quadric in Pn - 1 and the equation


1945 ◽  
Vol 35 ◽  
pp. 10-13 ◽  
Author(s):  
W. L. Edge

The pencil of quartic curveswhere x, y, z are homogeneous coordinates in a plane, was encountered by Ciani [Palermo Rendiconli, Vol. 13, 1899] in his search for plane quartic curves that were invariant under harmonic inversions. If x, y, z undergo any permutation the ternary quartic form on the left of (1) is not altered; nor is it altered if any, or all, of x, y, z be multiplied by −1. There thus arises an octahedral group G of ternary collineations for which every curve of the pencil is invariant.Since (1) may also be writtenthe four linesare, as Ciani pointed out, bitangents, at their intersections with the conic C whose equation is x2 + y2 + z2 = 0, to every quartic of the pencil. The 16 base points of the pencil are thus all accounted for—they consist of these eight contacts counted twice—and this set of points must of course be invariant under G. Indeed the 4! collineations of G are precisely those which give rise to the different permutations of the four lines (2), a collineation in a plane being determined when any four non-concurrent lines and the four lines which are to correspond to them are given. The quadrilateral formed by the lines (2) will be called q.


1927 ◽  
Vol 46 ◽  
pp. 210-222 ◽  
Author(s):  
H. W. Turnbull

It is well known that the Plücker coordinates of a straight line in ordinary space satisfy a quadratic identitywhich may also be considered as the equation of a point-quadric in five dimensions, if the six coordinates Pij are treated as six homogeneous coordinates of a point. Projective properties of line geometry may therefore be treated as projective properties of point geometry in five dimensions. This suggests that certain algebraic theories of quaternary forms (corresponding to the geometry of ordinary space) can best be treated as algebraic theories of senary forms: that is, forms in six homogeneous variables.


1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


1967 ◽  
Vol 10 (5) ◽  
pp. 669-673 ◽  
Author(s):  
J.H.H. Chalk

Let (x1, x2, …, xn) denote the coordinates of a point of Euclidean n-space En. Let be a set of n+1 points of En with the property thatform a linearly independent set and define a lattice Λ of pointsby allowing u1, …, un to take all integer values.


Author(s):  
V. Krishna Kumar

SynopsisThe fourth-order equation considered isConditions are given on the coefficients r, p and q which ensure that this differential equation (*) is in the strong limit-2 case at ∞, i.e. is limit-2 at ∞. This implies that (*) has exactly two linearly independent solutions which are in the integrable-square space ℒ2(0, ∞) for all complex numbers λ with im [λ] ≠ 0. Additionally the conditions imply that self-adjoint operators generated by M[·] in ℒ2(0, ∞) are semi-bounded below. The results obtained are applied to the case when the coefficients r, p and q are powers of x ∈ [0, ∞).


2018 ◽  
Vol 166 (3) ◽  
pp. 523-542 ◽  
Author(s):  
FLORIAN BOUYER ◽  
EDGAR COSTA ◽  
DINO FESTI ◽  
CHRISTOPHER NICHOLLS ◽  
MCKENZIE WEST

AbstractLet ℙ denote the weighted projective space with weights (1, 1, 1, 3) over the rationals, with coordinates x, y, z and w; let $\mathcal{X}$ be the generic element of the family of surfaces in ℙ given by \begin{equation*} X\colon w^2=x^6+y^6+z^6+tx^2y^2z^2. \end{equation*} The surface $\mathcal{X}$ is a K3 surface over the function field ℚ(t). In this paper, we explicitly compute the geometric Picard lattice of $\mathcal{X}$, together with its Galois module structure, as well as derive more results on the arithmetic of $\mathcal{X}$ and other elements of the family X.


1989 ◽  
Vol 105 (3) ◽  
pp. 459-462 ◽  
Author(s):  
Hitoshi Kaneta ◽  
Tatsuya Maruta

Let q be the finite field of q elements. Denote by Sr q the projective space of dimension r over q. In Sr,q, where r ≥ 2, a k-arc is defined (see [4]) as a set of k points such that no j + 2 lie in a Sj,q, for j = 1,2,…, r−1. (For a k-arc with k > r, this last condition holds for all j when it holds for j = r−1.) A rational curve Cn of order n in Sr,q, is the set


1969 ◽  
Vol 21 ◽  
pp. 235-249 ◽  
Author(s):  
Meira Lavie

In this paper we deal with the number of zeros of a solution of the nth order linear differential equation1.1where the functions pj(z) (j = 0, 1, …, n – 2) are assumed to be regular in a given domain D of the complex plane. The differential equation (1.1) is called disconjugate in D, if no (non-trivial) solution of (1.1) has more than (n – 1) zeros in D. (The zeros are counted by their multiplicity.)The ideas of this paper are related to those of Nehari (7; 9) on second order differential equations. In (7), he pointed out the following basic relationship. The function1.2where y1(z) and y2(z) are two linearly independent solutions of1.3is univalent in D, if and only if no solution of equation(1.3) has more than one zero in D, i.e., if and only if(1.3) is disconjugate in D.


Sign in / Sign up

Export Citation Format

Share Document