scholarly journals A plane quartic curve with twelve undulations

1945 ◽  
Vol 35 ◽  
pp. 10-13 ◽  
Author(s):  
W. L. Edge

The pencil of quartic curveswhere x, y, z are homogeneous coordinates in a plane, was encountered by Ciani [Palermo Rendiconli, Vol. 13, 1899] in his search for plane quartic curves that were invariant under harmonic inversions. If x, y, z undergo any permutation the ternary quartic form on the left of (1) is not altered; nor is it altered if any, or all, of x, y, z be multiplied by −1. There thus arises an octahedral group G of ternary collineations for which every curve of the pencil is invariant.Since (1) may also be writtenthe four linesare, as Ciani pointed out, bitangents, at their intersections with the conic C whose equation is x2 + y2 + z2 = 0, to every quartic of the pencil. The 16 base points of the pencil are thus all accounted for—they consist of these eight contacts counted twice—and this set of points must of course be invariant under G. Indeed the 4! collineations of G are precisely those which give rise to the different permutations of the four lines (2), a collineation in a plane being determined when any four non-concurrent lines and the four lines which are to correspond to them are given. The quadrilateral formed by the lines (2) will be called q.

1924 ◽  
Vol 22 (2) ◽  
pp. 189-199
Author(s):  
F. Bath

The connexion between the conditions for five lines of S4(i) to lie upon a quadric threefold,and (ii) to be chords of a normal quartic curve,leads to an apparent contradiction. This difficulty is explained in the first paragraph below and, subsequently, two investigations are given of which the first uses, mainly, properties of space of three dimensions.


1952 ◽  
Vol 48 (3) ◽  
pp. 383-391
Author(s):  
T. G. Room

This paper falls into three sections: (1) a system of birational transformations of the projective plane determined by plane cubic curves of a pencil (with nine associated base points), (2) some one-many transformations determined by the pencil, and (3) a system of birational transformations of three-dimensional projective space determined by the elliptic quartic curves through eight associated points (base of a net of quadric surfaces).


1927 ◽  
Vol 46 ◽  
pp. 210-222 ◽  
Author(s):  
H. W. Turnbull

It is well known that the Plücker coordinates of a straight line in ordinary space satisfy a quadratic identitywhich may also be considered as the equation of a point-quadric in five dimensions, if the six coordinates Pij are treated as six homogeneous coordinates of a point. Projective properties of line geometry may therefore be treated as projective properties of point geometry in five dimensions. This suggests that certain algebraic theories of quaternary forms (corresponding to the geometry of ordinary space) can best be treated as algebraic theories of senary forms: that is, forms in six homogeneous variables.


1981 ◽  
Vol 33 (4) ◽  
pp. 885-892
Author(s):  
W. L. Edge

If x0,x1, … xn are homogeneous coordinates in [n], projective space of n dimensions, the prime (to use the standard name for a hyperplane)osculates, as θ varies, the rational normal curve C whose parametric form is [2, p. 347]Take a set of n + 2 points on C for which θ = ηjζ where ζ is any complex number andso that the ηj, for 0 ≦ j < n + 2, are the (n + 2)th roots of unity. The n + 2 primes osculating C at these points bound an (n + 2)-hedron H which varies with η, and H is polar for all the quadrics(1.1)in the sense that the polar of any vertex, common to n of its n + 2 bounding primes, contains the opposite [n + 2] common to the residual pair.


1950 ◽  
Vol 8 (4) ◽  
pp. 147-162 ◽  
Author(s):  
W. L. Edge

1. The chief purpose of this paper is to demonstrate the existence of a plane quartic curve with eight undulations, an “undulation” being a point at which the tangent has four-point contact. It is shown that the curvewhere (x, y, z) are homogeneous point-coordinates and f a constant, has undulations at the eight points The curve has, in addition to these undulations, eight inflections which are; in general, distinct. But there are two geometrically different possibilities of their not being distinct, and in either instance they coincide in pairs at four further undulations. Thus two types of curve arise without any ordinary inflections at all, their 24 inflections coinciding in pairs at 12 undulations.


1989 ◽  
Vol 32 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Paul D. Humke ◽  
M. Laczkovich

Let C[0,1] be the Banach space of continuous functions defined on [0,1] and let C be the set of functions f∈C[0,1] mapping [0,1] into itself. If f∈C, fk will denote the kth iterate of f and we put Ck = {fk:f∈C;}. The set of increasing (≡ nondecreasing) and decreasing (≡ nonincreasing) functions in C will be denoted by ℐ and D, respectively. If a function f is defined on an interval I, we let C(f) denote the set of points at which f is locally constant, i.e.We let N denote the set of positive integers and NN denote the Baire space of sequences of positive integers.


1935 ◽  
Vol 31 (2) ◽  
pp. 174-182 ◽  
Author(s):  
H. W. Turnbull

In the early editions of the Geometry of Three Dimensions Salmon had stated that the equations of any three quadric surfaces could be simultaneously reduced to the sums of five squares. Such a reduction is not possible in general, but can be performed if and only if a certain combinant Λ, of the net of quadrics, vanishes. Algebraically the theory of such a net of quadrics is equivalent, as Hesse(2) showed, to that of a plane quartic curve: and the condition for the equation a quartic to be expressible to the sum of five fourth powers is equivalent to the condition Λ = 0(1). While Clebsch(3) was the first to establish this condition, Lüroth(4) gave it more explicit form by studying the quartic curvewhich satisfies the condition. Frahm(5) seems to have been the first to prove the impossibility of the above reduction of three general quadric surfaces, by remarking that the plane quartic curve obtained in Hesse's way from the locus of the vertices of cones of the net of quadrics would be a Lüroth quartic. Frahm further remarked that the three quadrics, so conditioned, could be regarded as the polar quadrics belonging to a cubic surface in ∞2 ways; but that for three general quadrics no such cubic surface exists. An explicit algebraical account of these properties was given by E. Toeplitz(6), who incidentally noticed that certain linear complexes associated with three general quadrics became special linear complexes when Λ = 0. This polar property of three quadrics in [3] was generalized to n dimensions by Anderson (7).


1974 ◽  
Vol 75 (3) ◽  
pp. 331-344 ◽  
Author(s):  
W. L. Edge

1. When, as will be presumed henceforward, no two of a0, a1, …, an are equal the n + 1 equationsare linearly independent; x0, x1, …, xn are homogeneous coordinates in [n] projective space of n dimensions—and the simplex of reference S is self-polar for all the quadrics.


1925 ◽  
Vol 22 (5) ◽  
pp. 694-699 ◽  
Author(s):  
H. W. Turnbull

§ 1. The six Plücker coordinates of a straight line in three dimensional space satisfy an identical quadratic relationwhich immediately shows that a one-one correspondence may be set up between lines in three dimensional space, λ, and points on a quadric manifold of four dimensions in five dimensional space, S5. For these six numbers pij may be considered to be six homogeneous coordinates of such a point.


1970 ◽  
Vol 11 (3) ◽  
pp. 381-383 ◽  
Author(s):  
W. D. Wallis

A (ν, κ, λ)-graph is defined in [3] as a graph on ν points, each of valency κ, and such that for any two points P and Q there are exactly λ points which are joined to both. In other words, if Si is the set of points joined to Pi, thenSi has k elements for any iSiSj has λ elements if i≠jThe sets Si are the blocks of a (v, k, λ)-configuration, so a necessary condition on v, k, and λ that a graph should exist is that a (v, k, λ)- configuration should exist. Another necessary condition, reported by Bose (see [1]) and others, is that there should be an integer m satisfying have equal parity. We shall prove that these conditions are not sufficient.


Sign in / Sign up

Export Citation Format

Share Document