scholarly journals Tail sums of convergent series of independent random variables

Author(s):  
Andrew D. Barbour

Let X1, X2, … be a sequence of independent random variables such that, for each n ≥ 1, EXn = 0 and and assume that then converges almost surely as N → ∞. Let and let Fn(x) denote the distribution function of Xn. Loynes (2) observed that the sequence {Sn} is a reversed martingale, and applied his central limit theorem to it: however, stronger results are obtainable, in precise duality with the classical theory of partial sums of independent random variables. These results describe the fluctuations of the sequence {Sn}, and hence the way in which converges to its limit.

1994 ◽  
Vol 17 (2) ◽  
pp. 323-340 ◽  
Author(s):  
Deli Li ◽  
M. Bhaskara Rao ◽  
Xiangchen Wang

Combining Feller's criterion with a non-uniform estimate result in the context of the Central Limit Theorem for partial sums of independent random variables, we obtain several results on the Law of the Iterated Logarithm. Two of these results refine corresponding results of Wittmann (1985) and Egorov (1971). In addition, these results are compared with the corresponding results of Teicher (1974), Tomkins (1983) and Tomkins (1990)


1969 ◽  
Vol 10 (1-2) ◽  
pp. 219-230
Author(s):  
C. R. Heathcote

Let X1, X2,…be independent and identically distributed non-lattice random variables with zero, varianceσ2<∞, and partial sums Sn = X1+X2+…+X.


1994 ◽  
Vol 26 (01) ◽  
pp. 104-121 ◽  
Author(s):  
Allen L. Roginsky

A central limit theorem for cumulative processes was first derived by Smith (1955). No remainder term was given. We use a different approach to obtain such a term here. The rate of convergence is the same as that in the central limit theorems for sequences of independent random variables.


Sign in / Sign up

Export Citation Format

Share Document