On the superposition of gravitational waves

1975 ◽  
Vol 77 (3) ◽  
pp. 559-565 ◽  
Author(s):  
J. B. Griffiths

AbstractThe nature of the non-linear interaction between two gravitational waves in the general theory of relativity is considered. A new exact solution of the vacuum field equations describing this case is given. It describes two gravitational waves with both transverse and longitudinal components, propagating in opposite directions along ‘shearing’ and ‘twisting’ geodesic congruences with zero contraction

Author(s):  
S. Parnovsky

In the famous textbook written by Landau and Lifshitz all the vacuum metrics of the general theory of relativity are derived, which depend on one coordinate in the absence of a cosmological constant. Unfortunately, when considering these solutions the authors missed some of the possible solutions discussed in this article. An exact solution is demonstrated, which is absent in the book by Landau and Lifshitz. It describes space-time with a gravitational wave of zero frequency. It is shown that there are no other solutions of this type than listed above and Minkowski’s metrics. The list of vacuum metrics that depend on one coordinate is not complete without solution provided in this paper.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This section presents annotations of the manuscript of Albert Einstein's canonical 1916 paper on the general theory of relativity. It begins with a discussion of the foundation of the general theory of relativity, taking into account Einstein's fundamental considerations on the postulate of relativity, and more specifically why he went beyond the special theory of relativity. It then considers the spacetime continuum, explaining the role of coordinates in the new theory of gravitation. It also describes tensors of the second and higher ranks, multiplication of tensors, the equation of the geodetic line, the formation of tensors by differentiation, equations of motion of a material point in the gravitational field, the general form of the field equations of gravitation, and the laws of conservation in the general case. Finally, the behavior of rods and clocks in the static gravitational field is examined.


2008 ◽  
Vol 08 (02) ◽  
pp. L141-L153
Author(s):  
THEO M. NIEUWENHUIZEN

Within the Relativistic Theory of Gravitation it is shown that the equation of state p = ρ holds near the center of a black hole. For the stiff equation of state p = ρ − ρc the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range beyond the horizon. The solution is regular everywhere, with a specific shape at the origin. The gravitational redshift at the horizon remains finite but is large, z ~ 1023 M⊙/M. Time keeps its standard role also in the interior. The energy of the Schwarzschild metric, shown to be minus infinity in the General Theory of Relativity, is regularized in this setup, resulting in E = Mc2.


Sign in / Sign up

Export Citation Format

Share Document