general theory of relativity
Recently Published Documents


TOTAL DOCUMENTS

545
(FIVE YEARS 108)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 19 (3) ◽  
pp. 5-32
Author(s):  
N. V. Golovko

The paper aims to show the importance of reasoning “from metaphysics” in the course of a consistent interpretation of the “against neoscholasticism” thesis (J. Ladyman). The idea that “the subject of metaphysics is metaphysical possibilities, and science determines which of them are actually achieved” (E. J. Lowe, J. Katz, etc.) reinforces the role of reasoning “from metaphysics” within the field of metaphysics of science. The general theory of relativity violates the common prevailing intuition that “causality is the subject of local physical interaction” (J. Bigelow). Interpretation of causality in terms of “forces” and “coming into” within the framework of E. J. Lowe's ontology makes it possible to talk about causality in terms of “finding” and “going out” of existence of the corresponding modes of objects connected by a formal “causal relationship”. The transition to E. J. Lowe's ontology helps not only to overcome the intuition of the locality of causality, but also reveals in its own way, for example, such seemingly simple common intuitions as the dependence of the truth of propositions on time or the understanding of time as a dimension. All this once again brings us back to the understanding of the importance of the fact that a scientist, constructing or interpreting a scientific theory, as a rule, uses non-trivial philosophical assumptions that should be the subject of its own philosophical analysis. 


2021 ◽  
Author(s):  
Sangwha Yi

In the general theory of relativity the Rindler coordinate theory has been extended to the Rindler coordinate theory of accelerated observer that has already some initial velocity. In this paper, we present this extended theory that uses the tetrad as the new method, and discover the new inverse-coordinate transformation. Specially, if, a0 < 0 , this theory treats the observer with the initial velocity that does slowdown by the constant negative acceleration in the Rindler’s time-space. We consider the light’s Doppler Effect in the accelerated system as well as the decelerated system.


2021 ◽  
Author(s):  
Sangwha Yi

In the general relativity theory, we discover new vacuum solution by Einstein’s gravity field equation. We investigate the new coordinate in cosmological general theory of relativity (CGTR).


2021 ◽  
Author(s):  
Sangwha Yi

In expanded universe, we found gravity field equation and solution. We found Schwarzschildsoluti on, Kerr-Newman solution in expanded universe. Hence, We found new general relativity theory-Cosmological General Theory of Relativity(CGTR).


2021 ◽  
Author(s):  
Sangwha Yi

In the cosmological general theory of relativity, we define the tetrad that moves in r-axis in the curved space-time. We study an accelerated motion in curved space-time.


2021 ◽  
Vol 34 (4) ◽  
pp. 420-428
Author(s):  
Stephen J. Crothers

Albert Einstein first presented his gravitational field equations in unimodular coordinates. In these coordinates, the field equations can be written explicitly in terms of the Einstein pseudotensor for the energy-momentum of the gravitational field. Since this pseudotensor produces, by contraction, a first-order intrinsic differential invariant, it violates the laws of pure mathematics. This is sufficient to prove that Einstein’s unimodular field equations are invalid. Since the unimodular form must hold in the general theory of relativity, it follows that the latter is also physically and mathematically unsound, lacking a proper mathematical foundation.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 497
Author(s):  
N. V. Krishnendu ◽  
Frank Ohme

The detections of gravitational-wave (GW) signals from compact binary coalescence by ground-based detectors have opened up the era of GW astronomy. These observations provide opportunities to test Einstein’s general theory of relativity at the strong-field regime. Here we give a brief overview of the various GW-based tests of General Relativity (GR) performed by the LIGO-Virgo collaboration on the detected GW events to date. After providing details for the tests performed in four categories, we discuss the prospects for each test in the context of future GW detectors. The four categories of tests include the consistency tests, parametrized tests for GW generation and propagation, tests for the merger remnant properties, and GW polarization tests.


2021 ◽  
Author(s):  
Konstantinos Patrinos

The non-inertiality of the rotating system of Faraday's unipolar generator forces us to address this problem using the principles of the general theory of relativity. The purpose of this study is to compare the theoretical quantitative estimates of induced electromotive force with the experimental results obtained from the corresponding measurements. The theoretical elaboration of this issue proves that the differences between the results of the general theory in relation to those of the special theory of relativity are some negligible terms, which are due to the non-inertiality of the rotating reference system. This result enables us to consider the theoretical estimates based on special and general relativity as equivalent, with quite satisfactory accuracy. Therefore, a very serious issue of inconsistency between the theory of relativity and the measurements of induced electromotive force emerges, since as already shown in the existing literature, this inconsistency, from the point of view of the special theory of relativity, is already proven.


2021 ◽  
Author(s):  
Konstantinos Patrinos

The non-inertiality of the rotating system of Faraday's unipolar generator forces us to address this problem using the principles of the general theory of relativity. The purpose of this study is to compare the theoretical quantitative estimates of induced electromotive force with the experimental results obtained from the corresponding measurements. The theoretical elaboration of this issue proves that the differences between the results of the general theory in relation to those of the special theory of relativity are some negligible terms, which are due to the non-inertiality of the rotating reference system. This result enables us to consider the theoretical estimates based on special and general relativity as equivalent, with quite satisfactory accuracy. Therefore, a very serious issue of inconsistency between the theory of relativity and the measurements of induced electromotive force emerges, since as already shown in the existing literature, this inconsistency, from the point of view of the special theory of relativity, is already proven.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
R. V. Lobato ◽  
G. A. Carvalho ◽  
C. A. Bertulani

AbstractIn this work, we investigate neutron stars (NS) in $$f(\mathtt {R,L_m})$$ f ( R , L m ) theory of gravity for the case $$f(\mathtt {R,L_m})= \mathtt {R}+ \mathtt {L_m}+ \sigma \mathtt {R}\mathtt {L_m}$$ f ( R , L m ) = R + L m + σ R L m , where $$\mathtt {R}$$ R is the Ricci scalar and $$\mathtt {L_m}$$ L m the Lagrangian matter density. In the term $$\sigma \mathtt {R}\mathtt {L_m}$$ σ R L m , $$\sigma $$ σ represents the coupling between the gravitational and particles fields. For the first time the hydrostatic equilibrium equations in the theory are solved considering realistic equations of state and NS masses and radii obtained are subject to joint constrains from massive pulsars, the gravitational wave event GW170817 and from the PSR J0030+0451 mass-radius from NASA’s Neutron Star Interior Composition Explorer (NICER) data. We show that in this theory of gravity, the mass-radius results can accommodate massive pulsars, while the general theory of relativity can hardly do it. The theory also can explain the observed NS within the radius region constrained by the GW170817 and PSR J0030+0451 observations for masses around $$1.4~M_{\odot }$$ 1.4 M ⊙ .


Sign in / Sign up

Export Citation Format

Share Document