Metric Diophantine approximation with two restricted variables I. Two square-free integers, or integers in arithmetic progressions

1988 ◽  
Vol 103 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Glyn Harman

In this paper, together with [7] and [8], we shall be concerned with estimating the number of solutions of the inequalityfor almost all α (in the sense of Lebesgue measure on Iℝ), where , and both m and n are restricted to sets of number-theoretic interest. Our aim is to prove results analogous to the following theorem (an improvement given in [2] of an earlier result of Khintchine [10]) and its quantitative developments (for example, see [11, 12,6]):Let ψ(n) be a non-increasing positive function of a positive integer variable n. Then the inequality (1·1) has infinitely many, or only finitely many, solutions in integers to, n(n > 0) for almost all real α, according to whether the sumdiverges, or converges, respectively.

1986 ◽  
Vol 99 (3) ◽  
pp. 385-394 ◽  
Author(s):  
Glyn Harman

An excellent introduction to the metric theory of diophantine approximation is provided by [19], where, in chapter 1·7, the reader may find a discussion of the first two problems considered in this paper. Our initial question concerns the number of solutions of the inequalityfor almost all α(in the sense of Lebesgue measure on ℝ). Here ∥ ∥ denotes distance to a nearest integer, {βr}, {ar} are given sequences of reals and distinct integers respectively, and f is a function taking values in [0, ½] and with Σf(r) divergent (for convenience we write ℱ for the set of all such functions). It is reasonable to expect that, for almost all α and with some additional constraint on f, the number of solutions of (1) is asymptotically equal toas k tends to infinity.


2014 ◽  
Vol 91 (1) ◽  
pp. 34-40 ◽  
Author(s):  
YUEHUA GE ◽  
FAN LÜ

AbstractWe study the distribution of the orbits of real numbers under the beta-transformation$T_{{\it\beta}}$for any${\it\beta}>1$. More precisely, for any real number${\it\beta}>1$and a positive function${\it\varphi}:\mathbb{N}\rightarrow \mathbb{R}^{+}$, we determine the Lebesgue measure and the Hausdorff dimension of the following set:$$\begin{eqnarray}E(T_{{\it\beta}},{\it\varphi})=\{(x,y)\in [0,1]\times [0,1]:|T_{{\it\beta}}^{n}x-y|<{\it\varphi}(n)\text{ for infinitely many }n\in \mathbb{N}\}.\end{eqnarray}$$


1960 ◽  
Vol 12 ◽  
pp. 619-631 ◽  
Author(s):  
Wolfgang Schmidt

In this paper we prove a sharpening and generalization of the following Theorem of Khintchine (4):Let ψ1(q), …, ψnq) be n non-negative junctions of the positive integer q and assumeis monotonically decreasing. Then the set of inequalities1has an infinity of integer solutions q > 0 and p1, … , pn for almost all or no sets of numbers θ1, … , θ2, according as Σψ(q) diverges or converges.


Author(s):  
Glyn Harman

We write ‖x‖ to denote the least distance from x to an integer, and write p for a prime variable. Duffin and Schaeffer [l] showed that for almost all real α the inequalityhas infinitely many solutions if and only ifdiverges. Thus f(x) = (x log log (10x))−1 is a suitable choice to obtain infinitely many solutions for almost all α. It has been shown [2] that for all real irrational α there are infinitely many solutions to (1) with f(p) = p−/13. We will show elsewhere that the exponent can be increased to 7/22. A very strong result on primes in arithmetic progressions (far stronger than anything within reach at the present time) would lead to an improvement on this result. On the other hand, it is very easy to find irrational a such that no convergent to its continued fraction expansion has prime denominator (for example (45– √10)/186 does not even have a square-free denominator in its continued fraction expansion, since the denominators are alternately divisible by 4 and 9).


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


Author(s):  
D. C. Spencer

1. Let .When r is a positive integer, various writers have considered sums of the formwhere ω1 and ω2 are two positive numbers whose ratio θ = ω1/ω2 is irrational and ξ is a real number satisfying 0 ≤ ξ < ω1. In particular, Hardy and Littlewood (2,3,4), Ostrowski(9), Hecke(6), Behnke(1), and Khintchine(7) have given best possible approximations for sums of this type for various classes of irrational numbers. Most writers have confined themselves to the case r = 1, in which


Author(s):  
J. W. S. Cassels

In this paper we are interested in statements about Diophantine approximation which are ‘almost always’ or ‘almost never’ true. Letbe s non-negative functions of the positive integer n, and let


2013 ◽  
Vol 94 (1) ◽  
pp. 50-105 ◽  
Author(s):  
CHRISTIAN ELSHOLTZ ◽  
TERENCE TAO

AbstractFor any positive integer $n$, let $f(n)$ denote the number of solutions to the Diophantine equation $$\begin{eqnarray*}\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\end{eqnarray*}$$ with $x, y, z$ positive integers. The Erdős–Straus conjecture asserts that $f(n)\gt 0$ for every $n\geq 2$. In this paper we obtain a number of upper and lower bounds for $f(n)$ or $f(p)$ for typical values of natural numbers $n$ and primes $p$. For instance, we establish that $$\begin{eqnarray*}N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\ll \displaystyle \sum _{p\leq N}f(p)\ll N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\log \log N.\end{eqnarray*}$$ These upper and lower bounds show that a typical prime has a small number of solutions to the Erdős–Straus Diophantine equation; small, when compared with other additive problems, like Waring’s problem.


2016 ◽  
Vol 160 (3) ◽  
pp. 477-494 ◽  
Author(s):  
J. CILLERUELO ◽  
M. Z. GARAEV

AbstractIn this paper we obtain new upper bound estimates for the number of solutions of the congruence $$\begin{equation} x\equiv y r\pmod p;\quad x,y\in \mathbb{N},\quad x,y\le H,\quad r\in \mathcal{U}, \end{equation}$$ for certain ranges of H and |${\mathcal U}$|, where ${\mathcal U}$ is a subset of the field of residue classes modulo p having small multiplicative doubling. We then use these estimates to show that the number of solutions of the congruence $$\begin{equation} x^n\equiv \lambda\pmod p; \quad x\in \mathbb{N}, \quad L<x<L+p/n, \end{equation}$$ is at most $p^{\frac{1}{3}-c}$ uniformly over positive integers n, λ and L, for some absolute constant c > 0. This implies, in particular, that if f(x) ∈ $\mathbb{Z}$[x] is a fixed polynomial without multiple roots in $\mathbb{C}$, then the congruence xf(x) ≡ 1 (mod p), x ∈ $\mathbb{N}$, x ⩽ p, has at most $p^{\frac{1}{3}-c}$ solutions as p → ∞, improving some recent results of Kurlberg, Luca and Shparlinski and of Balog, Broughan and Shparlinski. We use our results to show that almost all the residue classes modulo p can be represented in the form xgy (mod p) with positive integers x < p5/8+ϵ and y < p3/8. Here g denotes a primitive root modulo p. We also prove that almost all the residue classes modulo p can be represented in the form xyzgt (mod p) with positive integers x, y, z, t < p1/4+ϵ.


1989 ◽  
Vol 105 (3) ◽  
pp. 547-558 ◽  
Author(s):  
M. M. Dodson ◽  
B. P. Rynne ◽  
J. A. G. Vickers

In this paper we discuss homogeneous Diophantine approximation of points on smooth manifolds M in ℝk. We begin with a brief survey of the notation and results. For any x,y ∈ℝk, let.


Sign in / Sign up

Export Citation Format

Share Document