An almost everywhere central limit theorem

1988 ◽  
Vol 104 (3) ◽  
pp. 561-574 ◽  
Author(s):  
Gunnar A. Brosamler

The purpose of this paper is the proof of an almost everywhere version of the classical central limit theorem (CLT). As is well known, the latter states that for IID random variables Y1, Y2, … on a probability space (Ω, , P) with we have weak convergence of the distributions of to the standard normal distribution on ℝ. We recall that weak convergence of finite measures μn on a metric space S to a finite measure μ on S is defined to mean thatfor all bounded, continuous real functions on S. Equivalently, one may require the validity of (1·1) only for bounded, uniformly continuous real functions, or even for all bounded measurable real functions which are μ-a.e. continuous.

1966 ◽  
Vol 3 (01) ◽  
pp. 156-170
Author(s):  
D. C. Dowson

One of the earliest known distributions is that of the Binomial distribution which arises from a Bernoulli sequence defined on two symbols (or generators) a and b. The corresponding limit theorem is that of Demoivre and Laplace and states (in an obvious notation) that (r – np)/√npq converges to the standard Normal distribution N(0,1). If the generators do not commute the situation is a good deal more complicated and in order to say very much about the sequences generated we must be able to put them in some simple canonical form. One case in which this can certainly be done is when the two symbols generate a semi-group of nilpotency class two. This means that although ba ≠ ab, we do have ba = ab (b,a) where (b, a) is a symbol which commutes with both a and b. Each sequence can then be expressed in the form aαbβ (b,a) γ . In this paper we examine first the conditional distribution of γ given α and β for Bernoulli sequences in the symbols a and b and obtain central limit theorems when γ is appropriately normed. We then consider the more general problem of the m-generator semi-group of nilpotency class two and obtain the corresponding multi-dimensional central limit theorem in the case where the probability measure is discrete and is distributed over the generators.


1971 ◽  
Vol 8 (01) ◽  
pp. 52-59 ◽  
Author(s):  
C. C. Heyde

It is possible to interpret the classical central limit theorem for sums of independent random variables as a convergence rate result for the law of large numbers. For example, ifXi, i= 1, 2, 3, ··· are independent and identically distributed random variables withEXi=μ, varXi= σ2< ∞ andthen the central limit theorem can be written in the formThis provides information on the rate of convergence in the strong lawas. (“a.s.” denotes almost sure convergence.) It is our object in this paper to discuss analogues for the super-critical Galton-Watson process.


2000 ◽  
Vol 16 (5) ◽  
pp. 621-642 ◽  
Author(s):  
Robert M. de Jong ◽  
James Davidson

This paper gives new conditions for the functional central limit theorem, and weak convergence of stochastic integrals, for near-epoch-dependent functions of mixing processes. These results have fundamental applications in the theory of unit root testing and cointegrating regressions. The conditions given improve on existing results in the literature in terms of the amount of dependence and heterogeneity permitted, and in particular, these appear to be the first such theorems in which virtually the same assumptions are sufficient for both modes of convergence.


1971 ◽  
Vol 8 (1) ◽  
pp. 52-59 ◽  
Author(s):  
C. C. Heyde

It is possible to interpret the classical central limit theorem for sums of independent random variables as a convergence rate result for the law of large numbers. For example, if Xi, i = 1, 2, 3, ··· are independent and identically distributed random variables with EXi = μ, var Xi = σ2 < ∞ and then the central limit theorem can be written in the form This provides information on the rate of convergence in the strong law as . (“a.s.” denotes almost sure convergence.) It is our object in this paper to discuss analogues for the super-critical Galton-Watson process.


2008 ◽  
Vol 45 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Hans Daduna ◽  
Christian Malchin ◽  
Ryszard Szekli

We consider sequences of closed cycles of exponential single-server nodes with a single bottleneck. We study the cycle time and the successive sojourn times of a customer when the population sizes go to infinity. Starting from old results on the mean cycle times under heavy traffic conditions, we prove a central limit theorem for the cycle time distribution. This result is then utilised to prove a weak convergence characteristic of the vector of a customer's successive sojourn times during a cycle for a sequence of networks with population sizes going to infinity. The limiting picture is a composition of a central limit theorem for the bottleneck node and an exponential limit for the unscaled sequences of sojourn times for the nonbottleneck nodes.


1966 ◽  
Vol 3 (1) ◽  
pp. 156-170
Author(s):  
D. C. Dowson

One of the earliest known distributions is that of the Binomial distribution which arises from a Bernoulli sequence defined on two symbols (or generators) a and b. The corresponding limit theorem is that of Demoivre and Laplace and states (in an obvious notation) that (r – np)/√npq converges to the standard Normal distribution N(0,1). If the generators do not commute the situation is a good deal more complicated and in order to say very much about the sequences generated we must be able to put them in some simple canonical form. One case in which this can certainly be done is when the two symbols generate a semi-group of nilpotency class two. This means that although ba ≠ ab, we do have ba = ab (b,a) where (b, a) is a symbol which commutes with both a and b. Each sequence can then be expressed in the form aαbβ(b,a)γ. In this paper we examine first the conditional distribution of γ given α and β for Bernoulli sequences in the symbols a and b and obtain central limit theorems when γ is appropriately normed. We then consider the more general problem of the m-generator semi-group of nilpotency class two and obtain the corresponding multi-dimensional central limit theorem in the case where the probability measure is discrete and is distributed over the generators.


2021 ◽  
pp. 638-667
Author(s):  
James Davidson

This chapter reviews the theory of weak convergence in metric spaces. Topics include Skorokhod’s representation theorem, the metrization of spaces of measures, and the concept of tightness of probability measures. The key relation is shown between weak convergence and uniform tightness. Considering the space C of continuous functions in particular, the functional central limit theorem is proved for martingales, together with extensions to the multivariate case.


Sign in / Sign up

Export Citation Format

Share Document