Free quotients of congruence subgroups of SL2 over a Dedekind ring of arithmetic type contained in a function field

1987 ◽  
Vol 101 (3) ◽  
pp. 421-429 ◽  
Author(s):  
A. W. Mason

Let R be a commutative ring with identity and let q be an ideal in R. For each n ≽ 2, let En(R) be the subgroup of GLn(R) generated by the elementary matrices and let En(R, q) be the normal subgroup of En(R) generated by the q-elementary matrices. We put SLn(R, q) = Ker(SLn(R)→SLn(R/q)), the principal congruence subgroup of GLn(R) of level q. (By definition En(R, R) = En(R) and SLn(R, R) = SLn(R).)

1991 ◽  
Vol 119 (3-4) ◽  
pp. 191-212 ◽  
Author(s):  
A. W. Mason

SynopsisLet R be a commutative ring and let q be an R-ideal. Let En(R) be the subgroup of GLn(R) generated by the elementary matrices and let En(R, q) be the normal subgroup of En(R) generated by the q-elementary matrices. For each subgroup S of GLn(R) the order of S, o(S), is the R-ideal generated by xij, xii − xjj (i ≠ j), where (xij) ∈ S, and the level of S, l(S), is the largest R-ideal q0 with the property that En (R, q0) ≦ S. It is known that when n ≧ 3, the subgroup S is normalised by En(R) if and only if o(S) = l(S). It is also known that this result does not hold when n = 2. For example, there are uncountably many normal subgroups S of SL2(ℤ) such that o(S) ≠ {0} and l(S) = {0}, where ℤ is the ring of integers. In this paper we prove that, when A is a Dedekind ring of arithmetic type containing infinitely many units, the order q and level q′ of a subgroup S of GL2(A), normalised by E2(A), are closely related. It is proved that Ψ(q)≦q′, where ≦(q) = 12uq, with u the A-ideal generated by u2 − 1 (u ∈ A*), when A is contained in a number field, and Ψ(q) = q3, when A is contained in a function field.


2009 ◽  
Vol 12 ◽  
pp. 264-274 ◽  
Author(s):  
C. J. Cummins

AbstractLet G be a subgroup of PSL(2, R) which is commensurable with PSL(2, Z). We say that G is a congruence subgroup of PSL(2, R) if G contains a principal congruence subgroup /overline Γ(N) for some N. An algorithm is given for determining whether two congruence subgroups are conjugate in PSL(2, R). This algorithm is used to determine the PSL(2, R) conjugacy classes of congruence subgroups of genus-zero and genus-one. The results are given in a table.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Cai-Chang Li ◽  
Xiang-Gan Liu ◽  
Gui-Jun Ding

Abstract We propose to construct the finite modular groups from the quotient of two principal congruence subgroups as Γ(N′)/Γ(N″), and the modular group SL(2, ℤ) is ex- tended to a principal congruence subgroup Γ(N′). The original modular invariant theory is reproduced when N′ = 1. We perform a comprehensive study of $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry corresponding to N′ = 1 and N″ = 6, five types of models for lepton masses and mixing with $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry are discussed and some example models are studied numerically. The case of N′ = 2 and N″ = 6 is considered, the finite modular group is Γ(2)/Γ(6) ≅ T′, and a benchmark model is constructed.


2012 ◽  
Vol 22 (03) ◽  
pp. 1250026
Author(s):  
UZY HADAD

We prove that for any finite index subgroup Γ in SL n(ℤ), there exists k = k(n) ∈ ℕ, ϵ = ϵ(Γ) > 0, and an infinite family of finite index subgroups in Γ with a Kazhdan constant greater than ϵ with respect to a generating set of order k. On the other hand, we prove that for any finite index subgroup Γ of SL n(ℤ), and for any ϵ > 0 and k ∈ ℕ, there exists a finite index subgroup Γ′ ≤ Γ such that the Kazhdan constant of any finite index subgroup in Γ′ is less than ϵ, with respect to any generating set of order k. In addition, we prove that the Kazhdan constant of the principal congruence subgroup Γn(m), with respect to a generating set consisting of elementary matrices (and their conjugates), is greater than [Formula: see text], where c > 0 depends only on n. For a fixed n, this bound is asymptotically best possible.


1999 ◽  
Vol 51 (2) ◽  
pp. 266-293 ◽  
Author(s):  
Anton Deitmar ◽  
Werner Hoffman

AbstractWe prove a uniform upper estimate on the number of cuspidal eigenvalues of the Γ-automorphic Laplacian below a given bound when Γ varies in a family of congruence subgroups of a given reductive linear algebraic group. Each Γ in the family is assumed to contain a principal congruence subgroup whose index in Γ does not exceed a fixed number. The bound we prove depends linearly on the covolume of Γ and is deduced from the analogous result about the cut-off Laplacian. The proof generalizes the heat-kernel method which has been applied by Donnelly in the case of a fixed lattice Γ.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shota Kikuchi ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka ◽  
Shintaro Takada ◽  
Hikaru Uchida

Abstract We study the modular symmetry of zero-modes on $$ {T}_1^2\times {T}_2^2 $$ T 1 2 × T 2 2 and orbifold compactifications with magnetic fluxes, M1, M2, where modulus parameters are identified. This identification breaks the modular symmetry of $$ {T}_1^2\times {T}_2^2 $$ T 1 2 × T 2 2 , SL(2, ℤ)1× SL(2, ℤ)2 to SL(2, ℤ) ≡ Γ. Each of the wavefunctions on $$ {T}_1^2\times {T}_2^2 $$ T 1 2 × T 2 2 and orbifolds behaves as the modular forms of weight 1 for the principal congruence subgroup Γ(N), N being 2 times the least common multiple of M1 and M2. Then, zero-modes transform each other under the modular symmetry as multiplets of double covering groups of ΓN such as the double cover of S4.


2014 ◽  
Vol 151 (4) ◽  
pp. 603-664 ◽  
Author(s):  
Haruzo Hida

Let$p\geqslant 5$be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its Galois representation contains, up to finite error, a principal congruence subgroup${\rm\Gamma}(L)$of$\text{SL}_{2}(\mathbb{Z}_{p}[[T]])$for a principal ideal$(L)\neq 0$of$\mathbb{Z}_{p}[[T]]$for the canonical ‘weight’ variable$t=1+T$. If$L\notin {\rm\Lambda}^{\times }$, the power series$L$is proven to be a factor of the Kubota–Leopoldt$p$-adic$L$-function or of the square of the anticyclotomic Katz$p$-adic$L$-function or a power of$(t^{p^{m}}-1)$.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhe Chen

AbstractCusp forms are certain holomorphic functions defined on the upper half-plane, and the space of cusp forms for the principal congruence subgroup \Gamma(p), 𝑝 a prime, is acted on by \mathrm{SL}_{2}(\mathbb{F}_{p}). Meanwhile, there is a finite field incarnation of the upper half-plane, the Deligne–Lusztig (or Drinfeld) curve, whose cohomology space is also acted on by \mathrm{SL}_{2}(\mathbb{F}_{p}). In this note, we compute the relation between these two spaces in the weight 2 case.


Sign in / Sign up

Export Citation Format

Share Document