The order and level of a subgroup of GL2 over a Dedekind ring of arithmetic type

1991 ◽  
Vol 119 (3-4) ◽  
pp. 191-212 ◽  
Author(s):  
A. W. Mason

SynopsisLet R be a commutative ring and let q be an R-ideal. Let En(R) be the subgroup of GLn(R) generated by the elementary matrices and let En(R, q) be the normal subgroup of En(R) generated by the q-elementary matrices. For each subgroup S of GLn(R) the order of S, o(S), is the R-ideal generated by xij, xii − xjj (i ≠ j), where (xij) ∈ S, and the level of S, l(S), is the largest R-ideal q0 with the property that En (R, q0) ≦ S. It is known that when n ≧ 3, the subgroup S is normalised by En(R) if and only if o(S) = l(S). It is also known that this result does not hold when n = 2. For example, there are uncountably many normal subgroups S of SL2(ℤ) such that o(S) ≠ {0} and l(S) = {0}, where ℤ is the ring of integers. In this paper we prove that, when A is a Dedekind ring of arithmetic type containing infinitely many units, the order q and level q′ of a subgroup S of GL2(A), normalised by E2(A), are closely related. It is proved that Ψ(q)≦q′, where ≦(q) = 12uq, with u the A-ideal generated by u2 − 1 (u ∈ A*), when A is contained in a number field, and Ψ(q) = q3, when A is contained in a function field.

1987 ◽  
Vol 101 (3) ◽  
pp. 421-429 ◽  
Author(s):  
A. W. Mason

Let R be a commutative ring with identity and let q be an ideal in R. For each n ≽ 2, let En(R) be the subgroup of GLn(R) generated by the elementary matrices and let En(R, q) be the normal subgroup of En(R) generated by the q-elementary matrices. We put SLn(R, q) = Ker(SLn(R)→SLn(R/q)), the principal congruence subgroup of GLn(R) of level q. (By definition En(R, R) = En(R) and SLn(R, R) = SLn(R).)


1976 ◽  
Vol 28 (2) ◽  
pp. 420-428 ◽  
Author(s):  
James F. Hurley

In [6] we have constructed certain normal subgroups G7 of the elementary subgroup GR of the Chevalley group G(L, R) over R corresponding to a finite dimensional simple Lie algebra L over the complex field, where R is a commutative ring with identity. The method employed was to augment somewhat the generators of the elementary subgroup EI of G corresponding to an ideal I of the underlying Chevalley algebra LR;EI is thus the group generated by all xr(t) in G having the property that ter ⊂ I. In [6, § 5] we noted that in general EI actually had to be enlarged for a normal subgroup of GR to be obtained.


2003 ◽  
Vol 2003 (71) ◽  
pp. 4455-4464 ◽  
Author(s):  
M. E. Charkani ◽  
O. Lahlou

We give a practical criterion characterizing the monogenicity of the integral closure of a Dedekind ringR, based on results on the resultantRes(p,pi)of the minimal polynomialpof a primitive integral element and of its irreducible factorspimodulo prime ideals ofR. We obtain a generalization and an improvement of the Dedekind criterion (Cohen, 1996), and we give some applications in the case whereRis a discrete valuation ring or the ring of integers of a number field, generalizing some well-known classical results.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 835-848
Author(s):  
Ivo M. Michailov

Let K be a field and G be a finite group. Let G act on the rational function field K(x(g) : g ∈ G) by K-automorphisms defined by g · x(h) = x(gh) for any g, h ∈ G. Denote by K(G) the fixed field K(x(g) : g ∈ G)G. Noether's problem then asks whether K(G) is rational over K. Let p be an odd prime and let G be a p-group of exponent pe. Assume also that (i) char K = p > 0, or (ii) char K ≠ p and K contains a primitive pe-th root of unity. In this paper we prove that K(G) is rational over K for the following two types of groups: (1) G is a finite p-group with an abelian normal subgroup H of index p such that H is a direct product of normal subgroups of G of the type Cpb × (Cp)c for some b, c with 1 ≤ b and 0 ≤ c; (2) G is any group of order p5 from the isoclinic families with numbers 1, 2, 3, 4, 8 and 9.


Author(s):  
CLEMENS FUCHS ◽  
SEBASTIAN HEINTZE

Abstract Let $ (G_n)_{n=0}^{\infty } $ be a nondegenerate linear recurrence sequence whose power sum representation is given by $ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $ . We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions, $ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $ for $ n $ large enough.


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


2011 ◽  
Vol 31 (6) ◽  
pp. 1835-1847 ◽  
Author(s):  
PAUL A. SCHWEITZER, S. J.

AbstractWe determine all the normal subgroups of the group of Cr diffeomorphisms of ℝn, 1≤r≤∞, except when r=n+1 or n=4, and also of the group of homeomorphisms of ℝn ( r=0). We also study the group A0 of diffeomorphisms of an open manifold M that are isotopic to the identity. If M is the interior of a compact manifold with non-empty boundary, then the quotient of A0 by the normal subgroup of diffeomorphisms that coincide with the identity near to a given end e of M is simple.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


Author(s):  
L.A. Kurdachenko ◽  
◽  
A.A. Pypka ◽  
I.Ya. Subbotin ◽  
◽  
...  

We investigate the influence of some natural types of subgroups on the structure of groups. A subgroup H of a group G is called contranormal in G, if G = HG. A subgroup H of a group G is called core-free in G, if CoreG(H) =〈1〉. We study the groups, in which every non-normal subgroup is either contranormal or core-free. In particular, we obtain the structure of some monolithic and non-monolithic groups with this property


2019 ◽  
Vol 18 (04) ◽  
pp. 1950074
Author(s):  
Xuewu Chang

The normal embedding problem of finite solvable groups into [Formula: see text]-groups was studied. It was proved that for a finite solvable group [Formula: see text], if [Formula: see text] has a special normal nilpotent Hall subgroup, then [Formula: see text] cannot be a normal subgroup of any [Formula: see text]-group; on the other hand, if [Formula: see text] has a maximal normal subgroup which is an [Formula: see text]-group, then [Formula: see text] can occur as a normal subgroup of an [Formula: see text]-group under some suitable conditions. The results generalize the normal embedding theorem on solvable minimal non-[Formula: see text]-groups to arbitrary [Formula: see text]-groups due to van der Waall, and also cover the famous counterexample given by Dade and van der Waall independently to the Dornhoff’s conjecture which states that normal subgroups of arbitrary [Formula: see text]-groups must be [Formula: see text]-groups.


Sign in / Sign up

Export Citation Format

Share Document