Banach spaces whose algebras of operators have a large group of unitary elements

2008 ◽  
Vol 144 (1) ◽  
pp. 97-108 ◽  
Author(s):  
JULIO BECERRA GUERRERO ◽  
MARÍA BURGOS ◽  
EL AMIN KAIDI ◽  
ÁNGEL RODRÍGUEZ PALACIOS

AbstractWe prove that a complex Banach space X is a Hilbert space if (and only if) the Banach algebra $\mathcal L (X)$ (of all bounded linear operator on X) is unitary and there exists a conjugate-linear algebra involution • on $\mathcal L (X)$ satisfying T• = T−1 for every surjective linear isometry T on X. Appropriate variants for real spaces of the result just quoted are also proven. Moreover, we show that a real Banach space X is a Hilbert space if and only if it is a real JB*-triple and $\mathcal L (X)$ is $w_{op}'$-unitary, where $w'_{op}$ stands for the dual weak-operator topology.

2010 ◽  
Vol 10 (2) ◽  
pp. 325-348 ◽  
Author(s):  
Piotr Koszmider ◽  
Miguel Martín ◽  
Javier Merí

AbstractGiven a separable Banach space E, we construct an extremely non-complex Banach space (i.e. a space satisfying that ‖ Id + T2 ‖ = 1 + ‖ T2 ‖ for every bounded linear operator T on it) whose dual contains E* as an L-summand. We also study surjective isometries on extremely non-complex Banach spaces and construct an example of a real Banach space whose group of surjective isometries reduces to ±Id, but the group of surjective isometries of its dual contains the group of isometries of a separable infinite-dimensional Hilbert space as a subgroup.


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


1977 ◽  
Vol 18 (1) ◽  
pp. 13-15 ◽  
Author(s):  
P. G. Spain

Each bounded linear operator a on a Hilbert space K has a hermitian left-support projection p such that and (1 – p)K = ker α* = ker αα*. I demonstrate here that certain operators on Banach spaces also have left supports.Throughout this paper X will be a complex Banach space with norm-dual X', and L(X) will be the Banach algebra of bounded linear operators on X. Two linear subspaces Y and Z of X are orthogonal (in the sense of G. Birkhoff) if ∥ y ∥ ≦ ∥ y + z ∥ (y ∈Y, z ∈ Z); this orthogonality relation is not, in general, symmetric. It is easy to see that pX is orthogonal to (1 – p)X if and only if the norm of p is 0 or 1, when p is a projection on X.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


2012 ◽  
Vol 110 (2) ◽  
pp. 251 ◽  
Author(s):  
George Costakis ◽  
Ioannis Parissis

Let $T$ be a bounded linear operator acting on a complex Banach space $X$ and $(\lambda_n)_{n\in\mathsf{N}}$ a sequence of complex numbers. Our main result is that if $|\lambda_n|/|\lambda_{n+1}|\to 1$ and the sequence $(\lambda_n T^n)_{n\in\mathsf{N}}$ is frequently universal then $T$ is topologically multiply recurrent. To achieve such a result one has to carefully apply Szemerédi's theorem in arithmetic progressions. We show that the previous assumption on the sequence $( \lambda_n)_{n\in\mathsf{N}}$ is optimal among sequences such that $|\lambda_{n}|/|\lambda_{n+1}|$ converges in $[0,\infty]$. In the case of bilateral weighted shifts and adjoints of multiplication operators we provide characterizations of topological multiple recurrence in terms of the weight sequence and the symbol of the multiplication operator respectively.


2020 ◽  
Vol 65 (4) ◽  
pp. 585-597
Author(s):  
Chung-Cheng Kuo

"We show that $\tA+\tB$ is a closed subgenerator of a local $\tC$-cosine function $\tT(\cdot)$ on a complex Banach space $\tX$ defined by $$\tT(t)x=\sum\limits_{n=0}^\infty \tB^n\int_0^tj_{n-1}(s)j_n(t-s)\tC(|t-2s|)xds$$ for all $x\in\tX$ and $0\leq t<T_0$, if $\tA$ is a closed subgenerator of a local $\tC$-cosine function $\tC(\cdot)$ on $\tX$ and one of the following cases holds: $(i)$ $\tC(\cdot)$ is exponentially bounded, and $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ so that $\tB\tC=\tC\tB$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$; $(ii)$ $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ which commutes with $\tC(\cdot)$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$; $(iii)$ $\tB$ is a bounded linear operator on $\tX$ which commutes with $\tC(\cdot)$ on $\tX$. Here $j_n(t)=\frac{t^n}{n!}$ for all $t\in\Bbb R$, and $$\int_0^tj_{-1}(s)j_0(t-s)\tC(|t-2s|)xds=\tC(t)x$$ for all $x\in\tX$ and $0\leq t<T_0$."


2012 ◽  
Vol 34 (1) ◽  
pp. 132-152 ◽  
Author(s):  
SOPHIE GRIVAUX

AbstractWe study non-recurrence sets for weakly mixing dynamical systems by using linear dynamical systems. These are systems consisting of a bounded linear operator acting on a separable complex Banach space$X$, which becomes a probability space when endowed with a non-degenerate Gaussian measure. We generalize some recent results of Bergelson, del Junco, Lemańczyk and Rosenblatt, and show in particular that sets$\{n_{k}\}$such that$n_{k+1}/n_{k}\to +\infty $, or such that$n_{k}$divides$n_{k+1}$for each$k\ge 0$, are non-recurrence sets for weakly mixing linear dynamical systems. We also give examples, for each$r\ge 1$, of$r$-Bohr sets which are non-recurrence sets for some weakly mixing systems.


2003 ◽  
Vol 2003 (30) ◽  
pp. 1899-1909
Author(s):  
A. Bourhim

We describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operatorTon a Hilbert spaceℋ; some related consequences are discussed. Furthermore, we show that two densely similar cyclic Banach-space operators possessing Bishop's property(β)have equal approximate point spectra.


1968 ◽  
Vol 9 (2) ◽  
pp. 106-110 ◽  
Author(s):  
T. A. Gillespie ◽  
T. T. West

A Riesz operator is a bounded linear operator on a Banach space which possesses a Riesz spectral theory. These operators have been studied in [5] and [6]. In §2 of this paper we characterise Riesz operators in terms of their resolvent operators. In [6] it was shown that every Riesz operator on a Hilbert space can be decomposed into the sum of compact and quasi-nilpotent parts. §3 contains an example to show that these parts cannot, in general, be chosen to commute. In §4 the eigenset of a Riesz operator is defined. It is a sequence of quadruples each of which consists of an eigenvalue, the corresponding spectral projection, index and nilpotent part. This sequence satisfies certain obvious conditions, and the question arises of the existence of a Riesz operator which has such a sequence as its eigenset. We give an example of an eigenset which has no corresponding Riesz operator.


Sign in / Sign up

Export Citation Format

Share Document