Bases for commutative semigroups and groups

2008 ◽  
Vol 145 (3) ◽  
pp. 579-586 ◽  
Author(s):  
NEIL HINDMAN ◽  
DONA STRAUSS

AbstractA base for a commutative semigroup (S, +) is an indexed set 〈xt〉t∈A in S such that each element x ∈ S is uniquely representable as Σt∈Fxt where F is a finite subset of A and, if S has an identity 0, then 0 = Σn∈Øxt. We investigate those commutative semigroups or groups which have a base. We obtain the surprising result that has a base. More generally, we show that an abelian group has a base if and only if it has no elements of odd finite order.

2021 ◽  
Author(s):  
Ryszard Mazurek

AbstractFor any commutative semigroup S and positive integer m the power function $$f: S \rightarrow S$$ f : S → S defined by $$f(x) = x^m$$ f ( x ) = x m is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.


1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


1988 ◽  
Vol 40 (6) ◽  
pp. 1315-1321
Author(s):  
John L. Hayden

Throughout the paper, G will denote an additively written, but not always abelian, group of finite order n; and X = (xij) will denote a square matrix of order n with entries from G and whose rows and columns are numbered 0, 1, …, n − 1. We call X a cartesian array (afforded by G) if(1.1) The sequence {−xmi + xki, i = 0,…, n – 1} contains all elements of G whenever k ≠ m.By a theorem of Jungnickel (see Theorem 2.2 in [5]), the transpose of a cartesian array is also a cartesian array. We call G a cartesian group if there is a cartesian array X afforded by G. In this case, we also call (G, X) a cartesian pair.


1992 ◽  
Vol 34 (2) ◽  
pp. 133-141 ◽  
Author(s):  
A. V. Kelarev

A description of regular group rings is well known (see [12]). Various authors have considered regular semigroup rings (see [17], [8], [10], [11], [4]). These rings have been characterized for many important classes of semigroups, although the general problem turns out to be rather difficult and still has not got a complete solution. It seems natural to describe the regular radical in semigroup rings for semigroups of the classes mentioned. In [10], the regular semigroup rings of commutative semigroups were described. The aim of the present paper is to characterize the regular radical ρ(R[S]) for each associative ring R and commutative semigroup S.


1990 ◽  
Vol 108 (3) ◽  
pp. 429-433 ◽  
Author(s):  
A. V. Kelarev

Many authors have considered the radicals of semigroup rings of commutative semigroups. A list of the papers pertaining to this field is contained in [4]. In [1] Amitsur proved that, for any associative ring R and for every free commutative semigroup S, the equalities B(RS) = B(R)S and L(RS) = L(R)S hold, where B is the Baer radical and L is the Levitsky radical. A natural problem which arises is to describe semigroup rings RS such that π(RS) = π(R)S, where π is one of the most important radicals. For the Baer and Levitsky radicals and commutative semigroups a complete solution of the above problem follows from theorems 2·8 and 3·1 of [15].


2011 ◽  
Vol 18 (spec01) ◽  
pp. 881-888 ◽  
Author(s):  
K. Ahmadidelir ◽  
C. M. Campbell ◽  
H. Doostie

The commutativity degree of groups and rings has been studied by certain authors since 1973, and the main result obtained is [Formula: see text], where Pr (A) is the commutativity degree of a non-abelian group (or ring) A. Verifying this inequality for an arbitrary semigroup A is a natural question, and in this paper, by presenting an infinite class of finite non-commutative semigroups, we prove that the commutativity degree may be arbitrarily close to 1. We name this class of semigroups the almost commutative or approximately abelian semigroups.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jaeyoung Chung ◽  
Prasanna K. Sahoo

LetSbe a nonunital commutative semigroup,σ:S→San involution, andCthe set of complex numbers. In this paper, first we determine the general solutionsf,g:S→Cof Wilson’s generalizations of d’Alembert’s functional equations  fx+y+fx+σy=2f(x)g(y)andfx+y+fx+σy=2g(x)f(y)on nonunital commutative semigroups, and then using the solutions of these equations we solve a number of other functional equations on more general domains.


Author(s):  
David Bryant ◽  
Paul F. Tupper

AbstractDiversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of fiite metric spaces into L1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1 spaces. In the metric case, it iswell known that an n-point metric space can be embedded into L1 withO(log n) distortion. For diversities, the optimal distortion is unknown. Here, we establish the surprising result that symmetric diversities, those in which the diversity (value) assigned to a set depends only on its cardinality, can be embedded in L1 with constant distortion.


Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


Sign in / Sign up

Export Citation Format

Share Document