Cubic surfaces over finite fields

2010 ◽  
Vol 149 (3) ◽  
pp. 385-388 ◽  
Author(s):  
PETER SWINNERTON–DYER

Let V be a nonsingular cubic surface defined over the finite field Fq. It is well known that the number of points on V satisfies #V(Fq) = q2 + nq + 1 where −2 ≤ n ≤ 7 and that n = 6 is impossible; see for example [1], Table 1. Serre has asked if these bounds are best possible for each q. In this paper I shall show that this is so, with three exceptions:

2018 ◽  
Vol 167 (01) ◽  
pp. 35-60 ◽  
Author(s):  
BARINDER BANWAIT ◽  
FRANCESC FITÉ ◽  
DANIEL LOUGHRAN

AbstractLet S be a smooth cubic surface over a finite field $\mathbb{F}$q. It is known that #S($\mathbb{F}$q) = 1 + aq + q2 for some a ∈ {−2, −1, 0, 1, 2, 3, 4, 5, 7}. Serre has asked which values of a can arise for a given q. Building on special cases treated by Swinnerton–Dyer, we give a complete answer to this question. We also answer the analogous question for other del Pezzo surfaces, and consider the inverse Galois problem for del Pezzo surfaces over finite fields. Finally we give a corrected version of Manin's and Swinnerton–Dyer's tables on cubic surfaces over finite fields.


Author(s):  
Ronno Das

Abstract We compute the rational cohomology of the universal family of smooth cubic surfaces using Vassiliev’s method of simplicial resolution. Modulo embedding, the universal family has cohomology isomorphic to that of $\mathbb{P}^2$. A consequence of our theorem is that over the finite field $\mathbb{F}_q$, away from finitely many characteristics, the average number of points on a smooth cubic surface is q2+q + 1.


Author(s):  
W. L. Edge

SynopsisThe cubic surfaces in, save for the elliptic cone, are, whatever their singularities, projections of del Pezzo's non-singular surface F, of order 9 in. It is explained how, merely by specifying the geometrical relation of the vertex of projection to F, each cubic surface is obtainable “at a stroke”, without using spaces of intermediate dimensions.


1869 ◽  
Vol 159 ◽  
pp. 231-326 ◽  

The present Memoir is based upon, and is in a measure supplementary to that by Pro­fessor Schläfli, “On the Distribution of Surfaces of the Third Order into Species, in reference to the presence or absence of Singular Points, and the reality of their Lines,” Phil. Trans, vol. cliii. (1863) pp. 193—241. But the object of the Memoir is different. I disregard altogether the ultimate division depending on the reality of the lines, attend­ing only to the division into (twenty-two, or as I prefer to reckon it) twenty-three cases depending on the nature of the singularities. And I attend to the question very much on account of the light to be obtained in reference to the theory of Reciprocal Surfaces. The memoir referred to furnishes in fact a store of materials for this purpose, inasmuch as it gives (partially or completely developed) the equations in plane-coordinates of the several cases of cubic surfaces, or, what is the same thing, the equations in point-coor­dinates of the several surfaces (orders 12 to 3) reciprocal to these repectively. I found by examination of the several cases, that an extension was required of Dr. Salmon’s theory of Reciprocal Surfaces in order to make it applicable to the present subject ; and the preceding “Memoir on the Theory of Reciprocal Surfaces” was written in connexion with these investigations on Cubic Surfaces. The latter part of the Memoir is divided into sections headed thus:— “Section I = 12, equation (X, Y, Z, W ) 3 = 0” &c. referring to the several cases of the cubic surface; but the paragraphs are numbered continuously through the Memoir. The twenty-three Cases of Cubic Surfaces—Explanations and Table of Singularities . Article Nos. 1 to 13. 1. I designate as follows the twenty-three cases of cubic surfaces, adding to each of them its equation:


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


2003 ◽  
Vol 55 (2) ◽  
pp. 225-246 ◽  
Author(s):  
William D. Banks ◽  
Asma Harcharras ◽  
Igor E. Shparlinski

AbstractWe extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring [x]/M(x) for collections of polynomials either of the form f−1g−1 or of the form f−1g−1 + afg, where f and g are polynomials coprime to M and of very small degree relative to M, and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.


2020 ◽  
Vol 31 (03) ◽  
pp. 411-419
Author(s):  
Masamichi Kuroda

Generalized almost perfect nonlinear (GAPN) functions were defined to satisfy some generalizations of basic properties of almost perfect nonlinear (APN) functions for even characteristic. In particular, on finite fields of even characteristic, GAPN functions coincide with APN functions. In this paper, we study monomial GAPN functions for odd characteristic. We give monomial GAPN functions whose algebraic degree are maximum or minimum on a finite field of odd characteristic. Moreover, we define a generalization of exceptional APN functions and give typical examples.


2014 ◽  
Vol 57 (4) ◽  
pp. 834-844
Author(s):  
Doowon Koh

AbstractWe study Lp → Lr restriction estimates for algebraic varieties V in the case when restriction operators act on radial functions in the finite field setting. We show that if the varieties V lie in odd dimensional vector spaces over finite fields, then the conjectured restriction estimates are possible for all radial test functions. In addition, assuming that the varieties V are defined in even dimensional spaces and have few intersection points with the sphere of zero radius, we also obtain the conjectured exponents for all radial test functions.


2016 ◽  
Vol 12 (06) ◽  
pp. 1519-1528
Author(s):  
Kwang Yon Kim ◽  
Ryul Kim ◽  
Jin Song Kim

In order to extend the results of [Formula: see text] in [P. Das, The number of permutation polynomials of a given degree over a finite field, Finite Fields Appl. 8(4) (2002) 478–490], where [Formula: see text] is a prime, to arbitrary finite fields [Formula: see text], we find a formula for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], which has [Formula: see text] elements, in terms of the permanent of a matrix. We write down an expression for the number of permutation polynomials of degree [Formula: see text] over a finite field [Formula: see text], using the permanent of a matrix whose entries are [Formula: see text]th roots of unity and using this we obtain a nontrivial bound for the number. Finally, we provide a formula for the number of permutation polynomials of degree [Formula: see text] less than [Formula: see text].


2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Yasanthi Kottegoda

We consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on an irreducible characteristic polynomial of degree $n$ and order $m$. Let $t=(q^{n}-1)/ m$. We use quadratic forms over finite fields to give the exact number of occurrences of zeros of the sequence within its least period when $t$ has q-adic weight 2. Consequently we prove that the cardinality of the set of zeros for sequences from this category is equal to two.


Sign in / Sign up

Export Citation Format

Share Document