Mock theta functions and weakly holomorphic modular forms modulo 2 and 3
2014 ◽
Vol 158
(1)
◽
pp. 111-129
◽
Keyword(s):
AbstractWe prove that the coefficients of the mock theta functions \begin{eqnarray*} f(q) = \sum_{n=1}^{\infty} \frac{ q^{n^2}}{(1+q)^2 (1+q^2)^2 \cdots (1+q^n)^2 } \end{eqnarray*} and \begin{eqnarray*} \omega(q)=1+\sum_{n=1}^\infty \frac{q^{2n^2+2n}}{(1+q)^2(1+q^3)^2\cdots (1+q^{2n+1})^2} \end{eqnarray*} possess no linear congruences modulo 3. We prove similar results for the moduli 2 and 3 for a wide class of weakly holomorphic modular forms and discuss applications. This extends work of Radu on the behavior of the ordinary partition function.
2006 ◽
Vol 93
(2)
◽
pp. 304-324
◽
2009 ◽
Vol 145
(03)
◽
pp. 553-565
◽
2013 ◽
Vol 65
(3)
◽
pp. 781-805
◽
1957 ◽
Vol 9
◽
pp. 549-552
◽