scholarly journals Mock Jacobi forms in basic hypergeometric series

2009 ◽  
Vol 145 (03) ◽  
pp. 553-565 ◽  
Author(s):  
Soon-Yi Kang

AbstractWe show that someq-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and multiplied by suitable powers ofq. We also prove that certain linear sums ofq-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or completion by mock Jacobi forms. As an application, we obtain a relation between the rank and crank of a partition.

2014 ◽  
Vol 158 (1) ◽  
pp. 111-129 ◽  
Author(s):  
SCOTT AHLGREN ◽  
BYUNGCHAN KIM

AbstractWe prove that the coefficients of the mock theta functions \begin{eqnarray*} f(q) = \sum_{n=1}^{\infty} \frac{ q^{n^2}}{(1+q)^2 (1+q^2)^2 \cdots (1+q^n)^2 } \end{eqnarray*} and \begin{eqnarray*} \omega(q)=1+\sum_{n=1}^\infty \frac{q^{2n^2+2n}}{(1+q)^2(1+q^3)^2\cdots (1+q^{2n+1})^2} \end{eqnarray*} possess no linear congruences modulo 3. We prove similar results for the moduli 2 and 3 for a wide class of weakly holomorphic modular forms and discuss applications. This extends work of Radu on the behavior of the ordinary partition function.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2019 ◽  
Vol 16 (01) ◽  
pp. 91-106
Author(s):  
Qiuxia Hu ◽  
Hanfei Song ◽  
Zhizheng Zhang

In [G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook, Part II (Springer, New York, 2009), Entry 3.4.7, p. 67; Y.-S. Choi, The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24(3) (2011) 345–386; B. Chen, Mock theta functions and Appell–Lerch sums, J. Inequal Appl. 2018(1) (2018) 156; E. Mortenson, Ramanujan’s radial limits and mixed mock modular bilateral [Formula: see text]-hypergeometric series, Proc. Edinb. Math. Soc. 59(3) (2016) 1–13; W. Zudilin, On three theorems of Folsom, Ono and Rhoades, Proc. Amer. Math. Soc. 143(4) (2015) 1471–1476], the authors found the bilateral series for the universal mock theta function [Formula: see text]. In [Choi, 2011], the author presented the bilateral series connected with the odd-order mock theta functions in terms of Appell–Lerch sums. However, the author only derived the associated bilateral series for the fifth-order mock theta functions. The purpose of this paper is to further derive different types of bilateral series for the third-order mock theta functions. As applications, the identities between the two-group bilateral series are obtained and the bilateral series associated to the third-order mock theta functions are in fact modular forms. Then, we consider duals of the second type in terms of Appell–Lerch sums and duals in terms of partial theta functions defined by Hickerson and Mortenson of duals of the second type in terms of Appell–Lerch sums of such bilateral series associated to some third-order mock theta functions that Chen did not discuss in [On the dual nature theory of bilateral series associated to mock theta functions, Int. J. Number Theory 14 (2018) 63–94].


2011 ◽  
Vol 07 (03) ◽  
pp. 825-833 ◽  
Author(s):  
KATHRIN BRINGMANN ◽  
OLAV K. RICHTER

In previous work, we introduced harmonic Maass–Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass–Jacobi–Poincaré series, as well as Zwegers' real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass–Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this paper, we give exact formulas for the Fourier coefficients of the holomorphic parts of harmonic Maass–Jacobi forms and, in particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.


1967 ◽  
Vol 63 (3) ◽  
pp. 727-734 ◽  
Author(s):  
R. P. Agarwal ◽  
Arun Verma

In a series of recent papers Verma and Upadhyay (7,8,9) developed the theory of basic hypergeometric series with two bases q and q½. These investigations were made in an attempt to discover a summation formula for a bilateral basic hypergeometric series 2Ψ2 analogous to that for a 2H2 (cf. Bailey (2,3)) and in finding relations between certain q-infinite products. In one of their papers they mentioned that it did not seem possible to develop the corresponding general theory for basic series with two unconnected bases q and q1. A recent paper by Andrews (1) indicates that transformations between basic hypergeometric series with two unconnected bases can be very interesting and useful in the study of ‘mock’ theta functions and their extensions. Besides this interest, such a theory also enables one to extend the entire existing transformation theory of the generalized basic hypergeometric series.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 958
Author(s):  
Zeya Jia ◽  
Bilal Khan ◽  
Praveen Agarwal ◽  
Qiuxia Hu ◽  
Xinjing Wang

In our present investigation, we develop two new Bailey lattices. We describe a number of q-multisums new forms with multiple variables for the basic hypergeometric series which arise as consequences of these two new Bailey lattices. As applications, two new transformations for basic hypergeometric by using the unit Bailey pair are derived. Besides it, we use this Bailey lattice to get some kind of mock theta functions. Our results are shown to be connected with several earlier works related to the field of our present investigation.


2019 ◽  
Vol 17 (1) ◽  
pp. 1631-1651
Author(s):  
Ick Sun Eum ◽  
Ho Yun Jung

Abstract After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber functions can be identified with the Fourier coefficients of weakly holomorphic modular forms of weight 3/2 on the congruence subgroups of higher genus by using the Bruinier-Funke modular traces. Extending their work, we construct real-valued class invariants by using the singular values of the generalized Weber functions of level 5 and prove that their Galois traces are Fourier coefficients of a harmonic weak Maass form of weight 3/2 by using Shimura’s reciprocity law.


Sign in / Sign up

Export Citation Format

Share Document