scholarly journals Multisets in type theory

Author(s):  
HÅKON ROBBESTAD GYLTERUD

AbstractA multiset consists of elements, but the notion of a multiset is distinguished from that of a set by carrying information of how many times each element occurs in a given multiset. In this work we will investigate the notion of iterative multisets, where multisets are iteratively built up from other multisets, in the context Martin–Löf Type Theory, in the presence of Voevodsky’s Univalence Axiom.In his 1978 paper, “the type theoretic interpretation of constructive set theory” Aczel introduced a model of constructive set theory in type theory, using a W-type quantifying over a universe, and an inductively defined equivalence relation on it. Our investigation takes this W-type and instead considers the identity type on it, which can be computed from the univalence axiom. Our thesis is that this gives a model of multisets. In order to demonstrate this, we adapt axioms of constructive set theory to multisets, and show that they hold for our model.

Author(s):  
Cesare Gallozzi

Abstract We introduce a family of (k, h)-interpretations for 2 ≤ k ≤ ∞ and 1 ≤ h ≤ ∞ of constructive set theory into type theory, in which sets and formulas are interpreted as types of homotopy level k and h, respectively. Depending on the values of the parameters k and h, we are able to interpret different theories, like Aczel’s CZF and Myhill’s CST. We also define a proposition-as-hproposition interpretation in the context of logic-enriched type theories. The rest of the paper is devoted to characterising and analysing the interpretations considered. The formulas valid in the prop-as-hprop interpretation are characterised in terms of the axiom of unique choice. We also analyse the interpretations of CST into homotopy type theory, providing a comparative analysis with Aczel’s interpretation. This is done by formulating in a logic-enriched type theory the key principles used in the proofs of the two interpretations. Finally, we characterise a class of sentences valid in the (k, ∞)-interpretations in terms of the ΠΣ axiom of choice.


2010 ◽  
Vol 75 (4) ◽  
pp. 1137-1146 ◽  
Author(s):  
Giovanni Curi

Introduction. In 1937 E. Čech and M.H. Stone, independently, introduced the maximal compactification of a completely regular topological space, thereafter called Stone-Čech compactification [8, 23]. In the introduction of [8] the non-constructive character of this result is so described: “It must be emphasized that β(S) [the Stone-Čech compactification of S] may be defined only formally (not constructively) since it exists only in virtue of Zermelo's theorem”.By replacing topological spaces with locales, Banaschewski and Mulvey [4, 5, 6], and Johnstone [14] obtained choice-free intuitionistic proofs of Stone-Čech compactification. Although valid in any topos, these localic constructions rely—essentially, as is to be demonstrated—on highly impredicative principles, and thus cannot be considered as constructive in the sense of the main systems for constructive mathematics, such as Martin-Löf's constructive type theory and Aczel's constructive set theory.In [10] I characterized the locales of which the Stone-Čech compactification can be defined in constructive type theory CTT, and in the formal system CZF+uREA+DC, a natural extension of Aczel's system for constructive set theory CZF by a strengthening of the Regular Extension Axiom REA and the principle of Dependent Choice.


1998 ◽  
Vol 94 (1-3) ◽  
pp. 181-200 ◽  
Author(s):  
Michael Rathjen ◽  
Edward R. Griffor ◽  
Erik Palmgren

2018 ◽  
Vol 83 (3) ◽  
pp. 1132-1146 ◽  
Author(s):  
HÅKON ROBBESTAD GYLTERUD

AbstractWe give a model of set theory based on multisets in homotopy type theory. The equality of the model is the identity type. The underlying type of iterative sets can be formulated in Martin-Löf type theory, without Higher Inductive Types (HITs), and is a sub-type of the underlying type of Aczel’s 1978 model of set theory in type theory. The Voevodsky Univalence Axiom and mere set quotients (a mild kind of HITs) are used to prove the axioms of constructive set theory for the model. We give an equivalence to the model provided in Chapter 10 of “Homotopy Type Theory” by the Univalent Foundations Program.


2006 ◽  
Vol 71 (1) ◽  
pp. 67-103 ◽  
Author(s):  
Nicola Gambino ◽  
Peter Aczel

AbstractWe present a generalisation of the type-theoretic interpretation of constructive set theory into Martin-Löf type theory. The original interpretation treated logic in Martin-Löf type theory via the propositions-as-types interpretation. The generalisation involves replacing Martin-Löf type theory with a new type theory in which logic is treated as primitive. The primitive treatment of logic in type theories allows us to study reinterpretations of logic, such as the double-negation translation.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450005 ◽  
Author(s):  
Benno van den Berg ◽  
Ieke Moerdijk

We propose an extension of Aczel's constructive set theory CZF by an axiom for inductive types and a choice principle, and show that this extension has the following properties: it is interpretable in Martin-Löf's type theory (hence acceptable from a constructive and generalized-predicative standpoint). In addition, it is strong enough to prove the Set Compactness theorem and the results in formal topology which make use of this theorem. Moreover, it is stable under the standard constructions from algebraic set theory, namely exact completion, realizability models, forcing as well as more general sheaf extensions. As a result, methods from our earlier work can be applied to show that this extension satisfies various derived rules, such as a derived compactness rule for Cantor space and a derived continuity rule for Baire space. Finally, we show that this extension is robust in the sense that it is also reflected by the model constructions from algebraic set theory just mentioned.


2006 ◽  
Vol 141 (1-2) ◽  
pp. 257-265 ◽  
Author(s):  
Hajime Ishihara ◽  
Erik Palmgren

2017 ◽  
Vol 29 (1) ◽  
pp. 67-92 ◽  
Author(s):  
JAMES CHAPMAN ◽  
TARMO UUSTALU ◽  
NICCOLÒ VELTRI

The delay datatype was introduced by Capretta (Logical Methods in Computer Science, 1(2), article 1, 2005) as a means to deal with partial functions (as in computability theory) in Martin-Löf type theory. The delay datatype is a monad. It is often desirable to consider two delayed computations equal, if they terminate with equal values, whenever one of them terminates. The equivalence relation underlying this identification is called weak bisimilarity. In type theory, one commonly replaces quotients with setoids. In this approach, the delay datatype quotiented by weak bisimilarity is still a monad–a constructive alternative to the maybe monad. In this paper, we consider the alternative approach of Hofmann (Extensional Constructs in Intensional Type Theory, Springer, London, 1997) of extending type theory with inductive-like quotient types. In this setting, it is difficult to define the intended monad multiplication for the quotiented datatype. We give a solution where we postulate some principles, crucially proposition extensionality and the (semi-classical) axiom of countable choice. With the aid of these principles, we also prove that the quotiented delay datatype delivers free ω-complete pointed partial orders (ωcppos).Altenkirch et al. (Lecture Notes in Computer Science, vol. 10203, Springer, Heidelberg, 534–549, 2017) demonstrated that, in homotopy type theory, a certain higher inductive–inductive type is the free ωcppo on a type X essentially by definition; this allowed them to obtain a monad of free ωcppos without recourse to a choice principle. We notice that, by a similar construction, a simpler ordinary higher inductive type gives the free countably complete join semilattice on the unit type 1. This type suffices for constructing a monad, which is isomorphic to the one of Altenkirch et al. We have fully formalized our results in the Agda dependently typed programming language.


2014 ◽  
pp. 47-83 ◽  
Author(s):  
Andrea Cantini ◽  
Laura Crosilla

Sign in / Sign up

Export Citation Format

Share Document