Moduli of wild Higgs bundles on with -actions

Author(s):  
LAURA FREDRICKSON ◽  
ANDREW NEITZKE

Abstract We study a set $\mathcal{M}_{K,N}$ parameterising filtered SL(K)-Higgs bundles over $\mathbb{C}P^1$ with an irregular singularity at $z = \infty$ , such that the eigenvalues of the Higgs field grow like $\vert \lambda \vert \sim \vert z^{N/K} \mathrm{d}z \vert$ , where K and N are coprime. $\mathcal{M}_{K,N}$ carries a $\mathbb{C}^\times$ -action analogous to the famous $\mathbb{C}^\times$ -action introduced by Hitchin on the moduli spaces of Higgs bundles over compact curves. The construction of this $\mathbb{C}^\times$ -action on $\mathcal{M}_{K,N}$ involves the rotation automorphism of the base $\mathbb{C}P^1$ . We classify the fixed points of this $\mathbb{C}^\times$ -action, and exhibit a curious 1-1 correspondence between these fixed points and certain representations of the vertex algebra $\mathcal{W}_K$ ; in particular we have the relation $\mu = {k-1-c_{\mathrm{eff}}}/{12}$ , where $\mu$ is a regulated version of the L 2 norm of the Higgs field, and $c_{\mathrm{eff}}$ is the effective Virasoro central charge of the corresponding W-algebra representation. We also discuss a Białynicki–Birula-type decomposition of $\mathcal{M}_{K,N}$ , where the strata are labeled by isomorphism classes of the underlying filtered vector bundles.

1999 ◽  
Vol 154 ◽  
pp. 111-122 ◽  
Author(s):  
Marian Aprodu ◽  
Vasile Brînzănescu

AbstractWe study moduli spaces M(c1, c2, d, r) of isomorphism classes of algebraic 2-vector bundles with fixed numerical invariants c1, c2, d, r over a ruled surface. These moduli spaces are independent of any ample line bundle on the surface. The main result gives necessary and sufficient conditions for the non-emptiness of the space M(c1, c2, d, r) and we apply this result to the moduli spaces ML(c1, c2) of stable bundles, where L is an ample line bundle on the ruled surface.


2015 ◽  
Vol 26 (10) ◽  
pp. 1550086 ◽  
Author(s):  
N. Beck

In order to unify the construction of the moduli space of vector bundles with different types of global decorations, such as Higgs bundles, framed vector bundles and conic bundles, A. H. W. Schmitt introduced the concept of a swamp. In this work, we consider vector bundles with both a global and a local decoration over a fixed point of the base. This generalizes the notion of parabolic vector bundles, vector bundles with a level structure and parabolic Higgs bundles. We introduce a notion of stability and construct the coarse moduli space for these objects as the GIT-quotient of a parameter space. In the case of parabolic vector bundles and vector bundles with a level structure our stability concept reproduces the known ones. Thus, our work unifies the construction of their moduli spaces.


2021 ◽  
Vol 30 (1) ◽  
pp. 66-89
Author(s):  
Lie Fu ◽  
◽  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

<abstract><p>We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.</p></abstract>


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250037 ◽  
Author(s):  
MICHELE BOLOGNESI ◽  
SONIA BRIVIO

Let C be an algebraic smooth complex curve of genus g > 1. The object of this paper is the study of the birational structure of certain moduli spaces of vector bundles and of coherent systems on C and the comparison of different type of notions of stability arising in moduli theory. Notably we show that in certain cases these moduli spaces are birationally equivalent to fibrations over simple projective varieties, whose fibers are GIT quotients (ℙr-1)rg// PGL (r), where r is the rank of the considered vector bundles. This allows us to compare different definitions of (semi-)stability (slope stability, α-stability, GIT stability) for vector bundles, coherent systems and point sets, and derive relations between them. In certain cases of vector bundles of low rank when C has small genus, our construction produces families of classical modular varieties contained in the Coble hypersurfaces.


2001 ◽  
Vol 49 (3) ◽  
pp. 605-620 ◽  
Author(s):  
Laura Costa ◽  
Rosa M. Miró-Roig

Sign in / Sign up

Export Citation Format

Share Document