scholarly journals On the Voevodsky motive of the moduli space of Higgs bundles on a curve

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.

2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750049
Author(s):  
Indranil Biswas ◽  
Olivier Serman

Let [Formula: see text] be a geometrically irreducible smooth projective curve, of genus at least three, defined over the field of real numbers. Let [Formula: see text] be a connected reductive affine algebraic group, defined over [Formula: see text], such that [Formula: see text] is nonabelian and has one simple factor. We prove that the isomorphism class of the moduli space of principal [Formula: see text]-bundles on [Formula: see text] determine uniquely the isomorphism class of [Formula: see text].


2020 ◽  
Vol 156 (4) ◽  
pp. 744-769
Author(s):  
Sergey Mozgovoy ◽  
Olivier Schiffmann

We prove a closed formula counting semistable twisted (or meromorphic) Higgs bundles of fixed rank and degree over a smooth projective curve of genus $g$ defined over a finite field, when the twisting line bundle degree is at least $2g-2$ (this includes the case of usual Higgs bundles). This yields a closed expression for the Donaldson–Thomas invariants of the moduli spaces of twisted Higgs bundles. We similarly deal with twisted quiver sheaves of type $A$ (finite or affine), obtaining in particular a Harder–Narasimhan-type formula counting semistable $U(p,q)$-Higgs bundles over a smooth projective curve defined over a finite field.


Author(s):  
Indranil Biswas ◽  
Francesco Bottacin ◽  
Tomás L. Gómez

AbstractLet X be a complex irreducible smooth projective curve, and let $${{\mathbb {L}}}$$ L be an algebraic line bundle on X with a nonzero section $$\sigma _0$$ σ 0 . Let $${\mathcal {M}}$$ M denote the moduli space of stable Hitchin pairs $$(E,\, \theta )$$ ( E , θ ) , where E is an algebraic vector bundle on X of fixed rank r and degree $$\delta $$ δ , and $$\theta \, \in \, H^0(X,\, {\mathcal {E}nd}(E)\otimes K_X\otimes {{\mathbb {L}}})$$ θ ∈ H 0 ( X , E n d ( E ) ⊗ K X ⊗ L ) . Associating to every stable Hitchin pair its spectral data, an isomorphism of $${\mathcal {M}}$$ M with a moduli space $${\mathcal {P}}$$ P of stable sheaves of pure dimension one on the total space of $$K_X\otimes {{\mathbb {L}}}$$ K X ⊗ L is obtained. Both the moduli spaces $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M are equipped with algebraic Poisson structures, which are constructed using $$\sigma _0$$ σ 0 . Here we prove that the above isomorphism between $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M preserves the Poisson structures.


Author(s):  
Oscar García-Prada ◽  
S. Ramanan

This chapter considers the moduli space of rank 2 Higgs bundles with fixed determinant over a smooth projective curve X of genus 2 over ℂ, and studies involutions defined by tensoring the vector bundle with an element α‎ of order 2 in the Jacobian of the curve, combined with multiplication of the Higgs field by ±1. It describes the fixed points of these involutions in terms of the Prym variety of the covering of X defined by α‎, and gives an interpretation in terms of the moduli space of representations of the fundamental group.


2018 ◽  
Vol 5 (1) ◽  
pp. 146-149
Author(s):  
Sujoy Chakraborty ◽  
Arjun Paul

Abstract Let X be an irreducible smooth projective curve of genus g ≥ 2 over ℂ. Let MG, Higgsδbe a connected reductive affine algebraic group over ℂ. Let Higgs be the moduli space of semistable principal G-Higgs bundles on X of topological type δ∈π1(G). In this article,we compute the fundamental group and Picard group of


2015 ◽  
Vol 26 (10) ◽  
pp. 1550086 ◽  
Author(s):  
N. Beck

In order to unify the construction of the moduli space of vector bundles with different types of global decorations, such as Higgs bundles, framed vector bundles and conic bundles, A. H. W. Schmitt introduced the concept of a swamp. In this work, we consider vector bundles with both a global and a local decoration over a fixed point of the base. This generalizes the notion of parabolic vector bundles, vector bundles with a level structure and parabolic Higgs bundles. We introduce a notion of stability and construct the coarse moduli space for these objects as the GIT-quotient of a parameter space. In the case of parabolic vector bundles and vector bundles with a level structure our stability concept reproduces the known ones. Thus, our work unifies the construction of their moduli spaces.


2021 ◽  
Vol 30 (1) ◽  
pp. 66-89
Author(s):  
Lie Fu ◽  
◽  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

<abstract><p>We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.</p></abstract>


2010 ◽  
Vol 21 (11) ◽  
pp. 1505-1529 ◽  
Author(s):  
VICENTE MUÑOZ

Let X be a smooth projective curve of genus g ≥ 2 over ℂ. Fix n ≥ 2, d ∈ ℤ. A pair (E, ϕ) over X consists of an algebraic vector bundle E of rank n and degree d over X and a section ϕ ∈ H0(E). There is a concept of stability for pairs which depends on a real parameter τ. Let [Formula: see text] be the moduli space of τ-semistable pairs of rank n and degree d over X. Here we prove that the cohomology groups of [Formula: see text] are Hodge structures isomorphic to direct summands of tensor products of the Hodge structure H1(X). This implies a similar result for the moduli spaces of stable vector bundles over X.


2018 ◽  
Vol 29 (03) ◽  
pp. 1850015 ◽  
Author(s):  
Usha N. Bhosle

We define semistable generalized parabolic Hitchin pairs (GPH) on a disjoint union [Formula: see text] of integral smooth curves and construct their moduli spaces. We define a Hitchin map on the moduli space of GPH and show that it is a proper map. We construct moduli spaces of semistable Hitchin pairs on a reducible projective curve [Formula: see text]. When [Formula: see text] is the normalization of [Formula: see text], we give a birational morphism [Formula: see text] from the moduli space [Formula: see text] of good GPH on [Formula: see text] to the moduli space [Formula: see text] of Hitchin pairs on [Formula: see text] and show that the Hitchin map on [Formula: see text] induces a proper Hitchin map on [Formula: see text]. We determine the fibers of the Hitchin maps. We study the relationship between representations of the (topological) fundamental group of [Formula: see text] and Higgs bundles on [Formula: see text]. We show that if all the irreducible components of [Formula: see text] are smooth, then the Hitchin map is defined on the entire moduli space [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document