scholarly journals Permutable quasiregular maps

Author(s):  
ATHANASIOS TSANTARIS

Abstract Let f and g be two quasiregular maps in $\mathbb{R}^d$ that are of transcendental type and also satisfy $f\circ g =g \circ f$ . We show that if the fast escaping sets of those functions are contained in their respective Julia sets then those two functions must have the same Julia set. We also obtain the same conclusion about commuting quasimeromorphic functions with infinite backward orbit of infinity. Furthermore we show that permutable quasiregular functions of the form f and $g = \phi \circ f$ , where $\phi$ is a quasiconformal map, have the same Julia sets and that polynomial type quasiregular maps cannot commute with transcendental type ones unless their degree is less than or equal to their dilatation.

2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Mianmian Zhang ◽  
Yongping Zhang

Lotka–Volterra population competition model plays an important role in mathematical models. In this paper, Julia set of the competition model is introduced by use of the ideas and methods of Julia set in fractal geometry. Then feedback control is taken on the Julia set of the model. And synchronization of two different Julia sets of the model with different parameters is discussed, which makes one Julia set change to be another. The simulation results show the efficacy of these methods.


Author(s):  
James Waterman

Abstract We show that the Hausdorff dimension of the set of points of bounded orbit in the Julia set of a meromorphic map with a simply connected direct tract and a certain restriction on the singular values is strictly greater than one. This result is obtained by proving new results related to Wiman–Valiron theory.


2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2009 ◽  
Vol 29 (3) ◽  
pp. 875-883 ◽  
Author(s):  
CLINTON P. CURRY ◽  
JOHN C. MAYER ◽  
JONATHAN MEDDAUGH ◽  
JAMES T. ROGERS Jr

AbstractMakienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.


2011 ◽  
Vol 32 (5) ◽  
pp. 1711-1726 ◽  
Author(s):  
WENJUAN PENG ◽  
YONGCHENG YIN ◽  
YU ZHAI

AbstractIn this paper, taking advantage of quasi-conformal surgery, we prove that each non-hyperbolic rational map with a Cantor Julia set can be approximated by hyperbolic rational maps with Cantor Julia sets of the same degree.


2013 ◽  
Vol 23 (05) ◽  
pp. 1350083 ◽  
Author(s):  
YONGPING ZHANG

The dynamical and fractal behaviors of the complex perturbed rational maps [Formula: see text] are discussed in this paper. And the optimal control function method is taken on the Julia set of this system. In this control method, infinity is regarded as a fixed point to be controlled. By substituting the driving item for an item in the optimal control function, synchronization of Julia sets of two such different systems is also studied.


2009 ◽  
Vol 19 (10) ◽  
pp. 3235-3282 ◽  
Author(s):  
CHRISTIAN MIRA ◽  
ANNA AGLIARI ◽  
LAURA GARDINI

Part I of this paper has been devoted to properties of the different Julia set configurations, generated by the complex map TZ: z′ = z2 - c, c being a real parameter, -1/4 < c < 2. These properties were revisited from a detailed knowledge of the fractal organization (called "box-within-a-box"), generated by the map x′ = x2 - c with x a real variable. Here, the second part deals with an embedding of TZ into the two-dimensional noninvertible map [Formula: see text]; y′ = γ y + 4x2y, γ ≥ 0. For [Formula: see text] is semiconjugate to TZ in the invariant half plane (y ≤ 0). With a given value of c, and with γ decreasing, the identification of the global bifurcations sequence when γ → 0, permits to explain a route toward the Julia sets, from a study of the basin boundary of the attractor located on y = 0.


2011 ◽  
Vol 33 (1) ◽  
pp. 284-302 ◽  
Author(s):  
JÖRN PETER

AbstractWe show that the escaping sets and the Julia sets of bounded-type transcendental entire functions of order ρ become ‘smaller’ as ρ→∞. More precisely, their Hausdorff measures are infinite with respect to the gauge function hγ(t)=t2g(1/t)γ, where g is the inverse of a linearizer of some exponential map and γ≥(log ρ(f)+K1)/c, but for ρ large enough, there exists a function fρ of bounded type with order ρ such that the Hausdorff measures of the escaping set and the Julia set of fρ with respect to hγ′ are zero whenever γ′ ≤(log ρ−K2)/c.


2001 ◽  
Vol 33 (6) ◽  
pp. 689-694 ◽  
Author(s):  
GWYNETH M. STALLARD

It is known that, if f is a hyperbolic rational function, then the Hausdorff, packing and box dimensions of the Julia set, J(f), are equal. In this paper it is shown that, for a hyperbolic transcendental meromorphic function f, the packing and upper box dimensions of J(f) are equal, but can be strictly greater than the Hausdorff dimension of J(f).


Author(s):  
Mareike Wolff

AbstractLet $$g(z)=\int _0^zp(t)\exp (q(t))\,dt+c$$ g ( z ) = ∫ 0 z p ( t ) exp ( q ( t ) ) d t + c where p, q are polynomials and $$c\in {\mathbb {C}}$$ c ∈ C , and let f be the function from Newton’s method for g. We show that under suitable assumptions on the zeros of $$g''$$ g ′ ′ the Julia set of f has Lebesgue measure zero. Together with a theorem by Bergweiler, our result implies that $$f^n(z)$$ f n ( z ) converges to zeros of g almost everywhere in $${\mathbb {C}}$$ C if this is the case for each zero of $$g''$$ g ′ ′ that is not a zero of g or $$g'$$ g ′ . In order to prove our result, we establish general conditions ensuring that Julia sets have Lebesgue measure zero.


Sign in / Sign up

Export Citation Format

Share Document