On connected subsets of M2×2 without rank-one connections

Author(s):  
Kewei Zhang

We prove that connected subsets of M2×2 without rank-one connections are Lipschitz graphs of mappings from subsets of a fixed two-dimensional subspace to its orthogonal complement. Under a weaker condition that the set does not have rank-one connections locally, we are able to establish some global results on the set. We also establish some results on Lipschitz extensions of the functions thus obtained.

Author(s):  
Kewei Zhang

We construct nontrivial, non-negative quasiconvex functions denned on M2×2 with p-th order growth such that the zero sets of the functions are Lipschitz graphs of mappings from subsets of a fixed two-dimensional subspace to its orthogonal complement. We assume that the graphs do not have rank-one connections with the Lipschitz constants sufficiently small. In particular, we are able to construct quasiconvex functions which are homogeneous of degree p (p > 1) and ‘conjugating’ invariant.


2021 ◽  
Vol 143 (2) ◽  
pp. 301-335
Author(s):  
Jendrik Voss ◽  
Ionel-Dumitrel Ghiba ◽  
Robert J. Martin ◽  
Patrizio Neff

AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type $W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$ W ( F ) = μ 2 ∥ F ∥ 2 det F + f ( det F ) ; such an energy is rank-one convex if and only if the function $f$ f is convex.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2013 ◽  
Vol 104 (4) ◽  
pp. 465-493 ◽  
Author(s):  
Francesco Benini ◽  
Richard Eager ◽  
Kentaro Hori ◽  
Yuji Tachikawa

2011 ◽  
Vol 61 (5) ◽  
Author(s):  
Francisco García-Pacheco

AbstractIn this paper we study the geometry of isometric reflection vectors. In particular, we generalize known results by proving that the minimal face that contains an isometric reflection vector must be an exposed face. We also solve an open question by showing that there are isometric reflection vectors in any two dimensional subspace that are not isometric reflection vectors in the whole space. Finally, we prove that the previous situation does not hold in smooth spaces, and study the orthogonality properties of isometric reflection vectors in those spaces.


2013 ◽  
Vol 72 (6) ◽  
pp. 1-8 ◽  
Author(s):  
Benouis Mohamed ◽  
Tlmesani Redwan ◽  
Senouci Mohamed

1996 ◽  
Vol 126 (5) ◽  
pp. 1055-1065 ◽  
Author(s):  
Pablo Pedregal

We explore some necessary conditions for quasiconvexity in an attempt to show that rank-one convexity does not imply quasiconvexity when the target space for deformations is two- dimensional. An interesting construction is presented, showing how rank-one directions may fit with each other, making the task harder than in higher dimensions.


1997 ◽  
Vol 07 (01) ◽  
pp. 39-70 ◽  
Author(s):  
Gilles Millerioux ◽  
Christian Mira

These situations are put in evidence from two examples of (Z0 - Z2) maps. It is recalled that such maps (the simplest type of non-invertible ones) are related to the separation of the plane into a region without preimage, and a region each point of which has two rank-one preimages. With respect to diffeomorphisms, non-invertibility introduces more complex structures of the stable and unstable sets defining the homoclinic and heteroclinic situations, and the corresponding bifurcations. Critical curves permit the analysis of this question. More particularly, a basic global contact bifurcation (contact of the map critical curve with a non-connected saddle stable set Ws) plays a fundamental role for explaining the qualitative change of Ws, which occurs between two boundary homoclinic bifurcations limiting a parameter region related to the disappearing of an attracting invariant closed curve.


Sign in / Sign up

Export Citation Format

Share Document