Multipliers for vector valued functions

Author(s):  
José Luis Torrea

SynopsisLet G be a locally compact abelian group and let Γ be the dual of G. Let A, B be Banach spaces and Lp(G,A) the Bochner-Lebesgue spaces. We prove that the space of bounded linear translation invariant operators from L1(G, A) to LX(G, B) can be identified with the space of bounded convolution invariant (in some sense) operators and also with the space of a(A, B)-valued “weak regular” measures with the relation Tf = f *μ. (A. The existence of a function m∈ L∞ (Γ,α(A,B)), such that is also proved.

1994 ◽  
Vol 17 (3) ◽  
pp. 475-478 ◽  
Author(s):  
K. Parthasarathy ◽  
Sujatha Varma

Different versions of Wiener's Tauberian theorem are discussed for the generalized group algebraL1(G,A)(of integrable functions on a locally compact abelian groupGtaking values in a commutative semisimple regular Banach algebraA) usingA-valued Fourier transforms. A weak form of Wiener's Tauberian property is introduced and it is proved thatL1(G,A)is weakly Tauberian if and only ifAis. The vector analogue of Wiener'sL2-span of translates theorem is examined.


1987 ◽  
Vol 101 (2) ◽  
pp. 279-281
Author(s):  
Denis Bell

AbstractWe give a simple proof that a measure on a locally compact abelian group G is quasi-translation invariant with continuous translation densities if and only if it is equivalent to Haar measure on G and has a continuous positive density.


1973 ◽  
Vol 9 (1) ◽  
pp. 73-82 ◽  
Author(s):  
U.B. Tewari ◽  
A.K. Gupta

Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).


1981 ◽  
Vol 83 ◽  
pp. 1-4
Author(s):  
Jesper Laub

Let G be a locally compact abelian group and N a non-zero convolution kernel on G satisfying the domination principle. We define the cone of N-excessive measures E(N) to be the set of positive measures ξ for which N satisfies the relative domination principle with respect to ξ. For ξ ∈ E(N) and Ω ⊆ G open the reduced measure of ξ over Ω is defined as.


2018 ◽  
Vol 40 (2) ◽  
pp. 309-352
Author(s):  
JEAN-BAPTISTE AUJOGUE

In this work we consider translation-bounded measures over a locally compact Abelian group$\mathbb{G}$, with a particular interest in their so-called diffraction. Given such a measure$\unicode[STIX]{x1D714}$, its diffraction$\widehat{\unicode[STIX]{x1D6FE}}$is another measure on the Pontryagin dual$\widehat{\mathbb{G}}$, whose decomposition into the sum$\widehat{\unicode[STIX]{x1D6FE}}=\widehat{\unicode[STIX]{x1D6FE}}_{\text{p}}+\widehat{\unicode[STIX]{x1D6FE}}_{\text{c}}$of its atomic and continuous parts is central in diffraction theory. The problem we address here is whether the above decomposition of$\widehat{\unicode[STIX]{x1D6FE}}$lifts to$\unicode[STIX]{x1D714}$itself, that is to say, whether there exists a decomposition$\unicode[STIX]{x1D714}=\unicode[STIX]{x1D714}_{\text{p}}+\unicode[STIX]{x1D714}_{\text{c}}$, where$\unicode[STIX]{x1D714}_{\text{p}}$and$\unicode[STIX]{x1D714}_{\text{c}}$are translation-bounded measures having diffraction$\widehat{\unicode[STIX]{x1D6FE}}_{\text{p}}$and$\widehat{\unicode[STIX]{x1D6FE}}_{\text{c}}$, respectively. Our main result here is the almost sure existence, in a sense to be made precise, of such a decomposition. It will also be proved that a certain uniqueness property holds for the above decomposition. Next, we will be interested in the situation where translation-bounded measures are weighted Meyer sets. In this context, it will be shown that the decomposition, whether it exists, also consists of weighted Meyer sets. We complete this work by discussing a natural generalization of the considered problem.


Sign in / Sign up

Export Citation Format

Share Document