scholarly journals Approximation of relaxed Dirichlet problems by boundary value problems in perforated domains

Author(s):  
Gianni Dal Maso ◽  
Annalisa Malusa

Given an elliptic operator L on a bounded domain Ω ⊆ Rn, and a positive Radon measure μ on Ω, not charging polar sets, we discuss an explicit approximation procedure which leads to a sequence of domains Ωh ⊇ Ω with the following property: for every f ∈ H−1(Ω) the sequence uh of the solutions of the Dirichlet problems Luh = f in Ωh, uh = 0 on ∂Ωh, extended to 0 in Ω\Ωh, converges to the solution of the “relaxed Dirichlet problem” Lu + μu = f in Ω, u = 0 on ∂Ω.

1969 ◽  
Vol 36 ◽  
pp. 99-115
Author(s):  
Kazunari Hayashida

1. Let Ω be a bounded domain in the plane and denotes its closure and boundary by Ω̅ and ∂Ω, respectively. We shall say that the domain Ω is regular, if every point P ∈ ∂û has an 2-dimensional neighborhood U such that dΩ ∩ U can be mapped in a one-to-one way onto a portion of the tangent line through P by a mapping T which together with its inverse is infinitely differentiable. Let L be an elliptic operator of order 2m defined in Ω̅ and let be a normal set of boundary operators of orders mf <2m. If f is a given function in Ω, the boundary value problem II(L,f,Bj) will be to find a solution u ofsatisfyingBju = 0 on ∂Ω, j = 1, …, m.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


2018 ◽  
Vol 149 (2) ◽  
pp. 533-560
Author(s):  
Patricio Felmer ◽  
Erwin Topp

In this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on ${\bar \Omega}$. Both results are extended to an ample class of fully non-linear operators.


2019 ◽  
Vol 224 ◽  
pp. 01004
Author(s):  
Oleg Yaremko ◽  
Natalia Yaremko

In this paper, potential fields in areas with plane and circular symmetry have been studied. In this case, the field potential is defined as the sum of solutions of Dirichlet model boundary value problems. The reflection method is used for the modeling of stationary thermal fields in multilayer media. By applying the reflection method, we found analytical solutions of boundary value problems with boundary conditions of the fourth kind for the Laplace equations and developed new computational algorithms. The developed algorithms can be easily implemented and transformed into a computer code. First of all, these algorithms implement consistent solutions of the Dirichlet problems for the model domains that allows using libraries of subroutines. Secondly, they have high algorithmic efficiency. It has been shown that reflection method is identical to the method of transformation operators and proved that transformation operator can be decomposed into a series of successive reflections from the external and internal boundaries. Finally, a physical interpretation of the reflection method has been discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document