scholarly journals On Boundary Value Problems for Elliptic Equations in a Singular Domain

1969 ◽  
Vol 36 ◽  
pp. 99-115
Author(s):  
Kazunari Hayashida

1. Let Ω be a bounded domain in the plane and denotes its closure and boundary by Ω̅ and ∂Ω, respectively. We shall say that the domain Ω is regular, if every point P ∈ ∂û has an 2-dimensional neighborhood U such that dΩ ∩ U can be mapped in a one-to-one way onto a portion of the tangent line through P by a mapping T which together with its inverse is infinitely differentiable. Let L be an elliptic operator of order 2m defined in Ω̅ and let be a normal set of boundary operators of orders mf <2m. If f is a given function in Ω, the boundary value problem II(L,f,Bj) will be to find a solution u ofsatisfyingBju = 0 on ∂Ω, j = 1, …, m.

2022 ◽  
Vol 40 ◽  
pp. 1-10
Author(s):  
Duong Trong Luyen ◽  
Le Thi Hong Hanh

In this paper, we study the existence of multiple solutions for the boundary value problem\begin{equation}\Delta_{\gamma} u+f(x,u)=0 \quad \mbox{ in } \Omega, \quad \quad u=0 \quad \mbox{ on } \partial \Omega, \notag\end{equation}where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N \ (N \ge 2)$ and $\Delta_{\gamma}$ is the subelliptic operator of the type $$\Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \left(\gamma_j^2 \partial_{x_j} \right), \ \partial_{x_j}=\frac{\partial }{\partial x_{j}}, \gamma = (\gamma_1, \gamma_2, ..., \gamma_N), $$the nonlinearity $f(x , \xi)$ is subcritical growth and may be not satisfy the Ambrosetti-Rabinowitz (AR) condition. We establish the existence of three nontrivial solutions by using Morse theory.


Author(s):  
Gianni Dal Maso ◽  
Annalisa Malusa

Given an elliptic operator L on a bounded domain Ω ⊆ Rn, and a positive Radon measure μ on Ω, not charging polar sets, we discuss an explicit approximation procedure which leads to a sequence of domains Ωh ⊇ Ω with the following property: for every f ∈ H−1(Ω) the sequence uh of the solutions of the Dirichlet problems Luh = f in Ωh, uh = 0 on ∂Ωh, extended to 0 in Ω\Ωh, converges to the solution of the “relaxed Dirichlet problem” Lu + μu = f in Ω, u = 0 on ∂Ω.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Sergei Chuiko ◽  
Yaroslav Kalinichenko ◽  
Nikita Popov

The original conditions of solvability and the scheme of finding solutions of a linear Noetherian difference-algebraic boundary-value problem are proposed in the article, while the technique of pseudoinversion of matrices by Moore-Penrose is substantially used. The problem posed in the article continues to study the conditions for solvability of linear Noetherian boundary value problems given in the monographs of A.M. Samoilenko, A.V. Azbelev, V.P. Maximov, L.F. Rakhmatullina and A.A. Boichuk. The study of differential-algebraic boundary-value problems is closely related to the investigation of boundary-value problems for difference equations, initiated in the works of A.A. Markov, S.N. Bernstein, Y.S. Bezikovych, O.O. Gelfond, S.L. Sobolev, V.S. Ryabenkyi, V.B. Demidovych, A. Halanai, G.I. Marchuk, A.A. Samarskyi, Yu.A. Mytropolskyi, D.I. Martyniuk, G.M. Vainiko, A.M. Samoilenko and A.A. Boichuk. On the other hand, the study of boundary-value problems for difference equations is related to the study of differential-algebraic boundary-value problems initiated in the papers of K. Weierstrass, N.N. Lusin and F.R. Gantmacher. Systematic study of differential-algebraic boundary value problems is devoted to the works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, N.A. Perestiyk, V.P. Yakovets, A.A. Boichuk, A. Ilchmann and T. Reis. The study of differential-algebraic boundary value problems is also associated with numerous applications of such problems in the theory of nonlinear oscillations, in mechanics, biology, radio engineering, control theory, motion stability theory. The general case of a linear bounded operator corresponding to the homogeneous part of a linear Noetherian difference-algebraic boundary value problem has no inverse is investigated. The generalized Green operator of a linear difference-algebraic boundary value problem is constructed in the article. The relevance of the study of solvability conditions, as well as finding solutions of linear Noetherian difference-algebraic boundary-value problems, is associated with the widespread use of difference-algebraic boundary-value problems obtained by linearizing nonlinear Noetherian boundary-value problems for systems of ordinary differential and difference equations. Solvability conditions are proposed, as well as the scheme of finding solutions of linear Noetherian difference-algebraic boundary value problems are illustrated in detail in the examples.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imran Talib ◽  
Thabet Abdeljawad

Abstract Our main concern in this article is to investigate the existence of solution for the boundary-value problem $$\begin{aligned}& (\phi \bigl(x'(t)\bigr)'=g_{1} \bigl(t,x(t),x'(t)\bigr),\quad \forall t\in [0,1], \\& \Upsilon _{1}\bigl(x(0),x(1),x'(0)\bigr)=0, \\& \Upsilon _{2}\bigl(x(0),x(1),x'(1)\bigr)=0, \end{aligned}$$ ( ϕ ( x ′ ( t ) ) ′ = g 1 ( t , x ( t ) , x ′ ( t ) ) , ∀ t ∈ [ 0 , 1 ] , ϒ 1 ( x ( 0 ) , x ( 1 ) , x ′ ( 0 ) ) = 0 , ϒ 2 ( x ( 0 ) , x ( 1 ) , x ′ ( 1 ) ) = 0 , where $g_{1}:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}$ g 1 : [ 0 , 1 ] × R 2 → R is an $L^{1}$ L 1 -Carathéodory function, $\Upsilon _{i}:\mathbb{R}^{3}\rightarrow \mathbb{R} $ ϒ i : R 3 → R are continuous functions, $i=1,2$ i = 1 , 2 , and $\phi :(-a,a)\rightarrow \mathbb{R}$ ϕ : ( − a , a ) → R is an increasing homeomorphism such that $\phi (0)=0$ ϕ ( 0 ) = 0 , for $0< a< \infty $ 0 < a < ∞ . We obtain the solvability results by imposing some new conditions on the boundary functions. The new conditions allow us to ensure the existence of at least one solution in the sector defined by well ordered functions. These ordered functions do not require one to check the definitions of lower and upper solutions. Moreover, the monotonicity assumptions on the arguments of boundary functions are not required in our case. An application is considered to ensure the applicability of our results.


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


Sign in / Sign up

Export Citation Format

Share Document