Centraliser near-rings determined by fixed point free automorphism groups

1987 ◽  
Vol 107 (3-4) ◽  
pp. 327-337 ◽  
Author(s):  
Peter Fuchs ◽  
C. J. Maxson ◽  
M. R. Pettet ◽  
K. C. Smith

SynopsisLet G be a group and let A be a fixed point free group of automorphisms of G. It is shown that the centraliser near-ring MA(G) has at most one nontrivial ideal. Conditions on the pair (A, G) are given which force MA(G) to be simple. It is shown that if a nonsimple near-ring MA(G) exists, then A and G have unusual properties.

1973 ◽  
Vol 8 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Alan R. Camina ◽  
F. Peter Lockett

If the finite soluble group G admits the dihedral group of order eight as a fixed-point-free group of automorphisms then the nilpotent length of G is at most three.


1966 ◽  
Vol 18 ◽  
pp. 1243-1250 ◽  
Author(s):  
I. M. Isaacs ◽  
D. S. Passman

Let G be a finite group and A a group of automorphisms of G. Clearly A acts as a permutation group on G#, the set of non-identity elements of G. We assume that this permutation representation is half transitive, that is all the orbits have the same size. A special case of this occurs when A acts fixed point free on G. In this paper we study the remaining or non-fixed point free cases. We show first that G must be an elementary abelian g-group for some prime q and that A acts irreducibly on G. Then we classify all such occurrences in which A is a p-group.


2018 ◽  
Vol 30 (5) ◽  
pp. 1157-1162 ◽  
Author(s):  
Michelle Bucher ◽  
Nicolas Monod

AbstractWe prove the vanishing of the cup product of the bounded cohomology classes associated to any two Brooks quasimorphisms on the free group. This is a consequence of the vanishing of the square of a universal class for tree automorphism groups.


1981 ◽  
Vol 33 (2) ◽  
pp. 412-420 ◽  
Author(s):  
Martin R. Pettet

If A is a group acting on a set X and x ∈ X, we denote the stabilizer of x in A by CA(x) and let Γ(x) be the set of elements of X fixed by CA(x). We shall say the action of A is partitive if the distinct subsets Γ(x), x ∈ X, partition X. A special example of this phenomenon is the case of a semiregular action (when CA (x) = 1 for every x ∈ X so the induced partition is a trivial one). Our concern here is with the case that A is a group of automorphisms of a finite group G and X = G#, the set of non-identity elements of G. We shall prove that if A is nilpotent, then except in a very restricted situation, partitivity implies semiregularity.


1970 ◽  
Vol 22 (5) ◽  
pp. 922-932 ◽  
Author(s):  
M. J. Moore

In his fundamental paper [3], Hurwitz showed that the order of a group of biholomorphic transformations of a compact Riemann surface S into itself is bounded above by 84(g – 1) when S has genus g ≧ 2. This bound on the group of automorphisms (as we shall call the biholomorphic self-transformations) is attained for Klein's quartic curve of genus 3 [4] and, from this, Macbeath [7] deduced that the Hurwitz bound is attained for infinitely many values of g.After genus 3, the next smallest genus for which the bound is attained is the case g = 7. The equations of such a curve of genus 7 were determined by Macbeath [8] who also gave the equations of the transformations. The equations of these transformations were found by using the Lefschetz fixed point formula. If the number of fixed points of each element of a group of automorphisms is known, then the Lefschetz fixed point formula may be applied to deduce the character of the representation given by the group acting on the first homology group of the surface.


2005 ◽  
Vol 14 (08) ◽  
pp. 1087-1098 ◽  
Author(s):  
VALERIJ G. BARDAKOV

We construct a linear representation of the group IA (Fn) of IA-automorphisms of a free group Fn, an extension of the Gassner representation of the pure braid group Pn. Although the problem of faithfulness of the Gassner representation is still open for n > 3, we prove that the restriction of our representation to the group of basis conjugating automorphisms Cbn contains a non-trivial kernel even if n = 2. We construct also an extension of the Burau representation to the group of conjugating automorphisms Cn. This representation is not faithful for n ≥ 2.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850162 ◽  
Author(s):  
João Alberto de Faria ◽  
Benjamin Hutz

Let [Formula: see text] be a field and [Formula: see text] a morphism. There is a natural conjugation action on the space of such morphisms by elements of the projective linear group [Formula: see text]. The group of automorphisms, or stabilizer group, of a given [Formula: see text] for this action is known to be a finite group. In this paper, we apply methods of invariant theory to automorphism groups by addressing two mainly computational problems. First, given a finite subgroup of [Formula: see text], determine endomorphisms of [Formula: see text] with that group as a subgroup of its automorphism group. In particular, we show that every finite subgroup occurs infinitely often and discuss some associated rationality problems. Inversely, given an endomorphism, determine its automorphism group. In particular, we extend the Faber–Manes–Viray fixed-point algorithm for [Formula: see text] to endomorphisms of [Formula: see text]. A key component is an explicit bound on the size of the automorphism group depending on the degree of the endomorphism.


1973 ◽  
Vol s3-27 (1) ◽  
pp. 69-87 ◽  
Author(s):  
G. M. Bergman ◽  
I. M. Isaacs

2016 ◽  
Vol 184 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Gülin Ercan ◽  
İsmail Ş. Güloğlu

Sign in / Sign up

Export Citation Format

Share Document