fixed point algorithm
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Fernando Miguelez ◽  
Josu Doncel ◽  
Balakrishna J. Prabhu

AbstractWe study the optimal Bernoulli routing in a multiclass queueing system with a dedicated server for each class as well as a common (or multi-skilled) server that can serve jobs of all classes. Jobs of each class arrive according to a Poisson process. Each server has a holding cost per customer and use the processor sharing discipline for service. The objective is to minimize the weighted mean holding cost. First, we provide conditions under which classes send their traffic only to their dedicated server, only to the common server, or to both. A fixed point algorithm is given for the computation of the optimal solution. We then specialize to two classes and give explicit expressions for the optimal loads. Finally, we compare the cost of multi-skilled server with that of only dedicated or all common servers. The theoretical results are complemented by numerical examples that illustrate the various structural results as well as the convergence of the fixed point algorithm.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Vasile Berinde

For approximating the fixed points of enriched nonexpansive mappings in Hilbert spaces, we consider a modified Krasnosel’skiǐ–Mann algorithm for which we prove a strong convergence theorem. We also empirically compare the rate of convergence of the modified Krasnosel’skiǐ–Mann algorithm and of the simple Krasnosel’skiǐ fixed point algorithm. Based on the numerical experiments reported in the paper we conclude that, for the class of enriched nonexpansive mappings, it is more convenient to work with the simple Krasnosel’skiǐ fixed point algorithm than with the modified Krasnosel’skiǐ–Mann algorithm.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 425
Author(s):  
Jeremiah S. Lane ◽  
Benjamin F. Akers

This research investigates laser-induced convection through a stream function-vorticity formulation. Specifically, this paper considers a solution to the steady Boussinesq Navier–Stokes equations in two dimensions with a slip boundary condition on a finite box. A fixed-point algorithm is introduced in stream function-vorticity variables, followed by a proof of the existence of steady solutions for small laser amplitudes. From this analysis, an asymptotic relationship is demonstrated between the nondimensional fluid parameters and least upper bounds for laser amplitudes that guarantee existence, which accords with numerical results implementing the algorithm in a finite difference scheme. The findings indicate that the upper bound for laser amplitude scales by O(Re−2Pe−1Ri−1) when Re≫Pe, and by O(Re−1Pe−2Ri−1) when Pe≫Re. These results suggest that the existence of steady solutions is heavily dependent on the size of the Reynolds (Re) and Peclet (Pe) numbers, as noted in previous studies. The simulations of steady solutions indicate the presence of symmetric vortex rings, which agrees with experimental results described in the literature. From these results, relevant implications to thermal blooming in laser propagation simulations are discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2619
Author(s):  
Panadda Thongpaen ◽  
Rattanakorn Wattanataweekul

In this paper, we introduce a new iterative method using an inertial technique for approximating a common fixed point of an infinite family of nonexpansive mappings in a Hilbert space. The proposed method’s weak convergence theorem was established under some suitable conditions. Furthermore, we applied our main results to solve convex minimization problems and image restoration problems.


Author(s):  
Andrea Bonito ◽  
Vivette Girault ◽  
Diane Guignard ◽  
Kumbakonam R. Rajagopal ◽  
Endre Süli

We consider the mathematical analysis and numerical approximation of a system of nonlinear partial differential equations that arises in models that have relevance to  steady isochoric flows of colloidal suspensions. The symmetric velocity gradient is assumed to be a monotone nonlinear function of the deviatoric part of the Cauchy stress tensor. We prove the existence of a weak solution to the problem, and under the additional assumption that the nonlinearity involved in the constitutive relation is Lipschitz continuous we also prove uniqueness of the weak solution. We then construct mixed finite element approximations of the system using both conforming and nonconforming finite element spaces. For both of these we prove the convergence of the method to the unique weak solution of the problem, and in the case of the conforming method we provide a bound on the error between the analytical solution and its finite element approximation in terms of the best approximation error from the finite element spaces. We propose first a Lions-Mercier type iterative method and next a classical fixed-point algorithm to solve the finite-dimensional problems resulting from the finite element discretisation of the system of nonlinear partial differential equations under consideration and present numerical experiments that illustrate the practical performance of the proposed numerical method.


Author(s):  
Duong Viet Thong ◽  
Aviv Gibali ◽  
Mathias Staudigl ◽  
Phan Tu Vuong

AbstractDynamic user equilibrium (DUE) is a Nash-like solution concept describing an equilibrium in dynamic traffic systems over a fixed planning period. DUE is a challenging class of equilibrium problems, connecting network loading models and notions of system equilibrium in one concise mathematical framework. Recently, Friesz and Han introduced an integrated framework for DUE computation on large-scale networks, featuring a basic fixed-point algorithm for the effective computation of DUE. In the same work, they present an open-source MATLAB toolbox which allows researchers to test and validate new numerical solvers. This paper builds on this seminal contribution, and extends it in several important ways. At a conceptual level, we provide new strongly convergent algorithms designed to compute a DUE directly in the infinite-dimensional space of path flows. An important feature of our algorithms is that they give provable convergence guarantees without knowledge of global parameters. In fact, the algorithms we propose are adaptive, in the sense that they do not need a priori knowledge of global parameters of the delay operator, and which are provable convergent even for delay operators which are non-monotone. We implement our numerical schemes on standard test instances, and compare them with the numerical solution strategy employed by Friesz and Han.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Changle Song ◽  
Julien Monteil ◽  
Jean-Luc Ygnace ◽  
David Rey

Traffic congestion is largely due to the high proportion of solo drivers during peak hours. Ridesharing, in the sense of carpooling, has emerged as a travel mode with the potential to reduce congestion by increasing the average vehicle occupancy rates and reduce the number of vehicles during commuting periods. In this study, we propose a simulation-based optimization framework to explore the potential of subsidizing ridesharing users, drivers, and riders, so as to improve social welfare and reduce congestion. We focus our attention on a realistic case study representative of the morning commute on Sydney’s M4 Motorway in Australia. We synthesize a network model and travel demand data from open data sources and use a multinomial logistic model to capture users’ preferences across different travel roles, including solo drivers, ridesharing drivers, ridesharing passengers, and a reserve option that does not contribute to congestion on the freeway network. We use a link transmission model to simulate traffic congestion on the freeway network and embed a fixed-point algorithm to equilibrate users’ mode choice in the long run within the proposed simulation-based optimization framework. Our numerical results reveal that ridesharing incentives have the potential to improve social welfare and reduce congestion. However, we find that providing too many subsidies to ridesharing users may increase congestion levels and thus be counterproductive from a system performance standpoint. We also investigate the impact of transaction fees to a third-party ridesharing platform on social welfare and traffic congestion. We observe that increasing the transaction fee for ridesharing passengers may help in mitigating congestion effects while improving social welfare in the system.


2021 ◽  
Vol 11 (10) ◽  
pp. 4637
Author(s):  
Gildas Yaovi Amouzou ◽  
Azzeddine Soulaïmani

Two numerical algorithms for solving elastoplastic problems with the finite element method are presented. The first deals with the implementation of the return mapping algorithm and is based on a fixed-point algorithm. This method rewrites the system of elastoplasticity non-linear equations in a form adapted to the fixed-point method. The second algorithm relates to the computation of the elastoplastic consistent tangent matrix using a simple finite difference scheme. A first validation is performed on a nonlinear bar problem. The results obtained show that both numerical algorithms are very efficient and yield the exact solution. The proposed algorithms are applied to a two-dimensional rockfill dam loaded in plane strain. The elastoplastic tangent matrix is calculated by using the finite difference scheme for Mohr–Coulomb’s constitutive law. The results obtained with the developed algorithms are very close to those obtained via the commercial software PLAXIS. It should be noted that the algorithm’s code, developed under the Matlab environment, offers the possibility of modeling the construction phases (i.e., building layer by layer) by activating the different layers according to the imposed loading. This algorithmic and implementation framework allows to easily integrate other laws of nonlinear behaviors, including the Hardening Soil Model.


2021 ◽  
Vol 67 (5) ◽  
pp. 1331-1348
Author(s):  
Franz Bamer ◽  
Nima Shirafkan ◽  
Xiaodan Cao ◽  
Abdelbacet Oueslati ◽  
Marcus Stoffel ◽  
...  

AbstractIn this contribution, we present a space-time formulation of the Newmark integration scheme for linear damped structures under both harmonic and transient excitations. The incremental set of equations of motion and the Newmark approximations are transformed into their corresponding space-time equivalents. The dynamic system is then represented by one algebraic space-time equation only. This equation is projected into a coupled pair of space-time equations, which is solved via the fixed point algorithm. The solution is iteratively assembled by enrichments, each of which is decomposed by a dyadic product of spatial and temporal enrichment vectors. The evolution of the spatial enrichment vectors is investigated during convergence and interpreted by comparing them to the set of linear modes of vibration. The new method is demonstrated by means of four numerical examples, presenting not only the excellent convergence behavior and the numerical efficiency but also the limits of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document