On the elliptic points of the Hilbert modular group of the totally real cyclotomic cubic field ℚ(ζ9)+

Author(s):  
A. Arenas

We determine explicitly the elliptic points with respect to the Hilbert modular group associated with the totally real cyclotomic cubic field ℚ(ζ + ζ−1), where ζ stands for a primitive 9th root of unity.

1988 ◽  
Vol 30 (2) ◽  
pp. 231-236
Author(s):  
Shigeaki Tsuyumine

Let K be a totally real algebraic number field of degree n > 1, and let OK be the maximal order. We denote by гk, the Hilbert modular group SL2(OK) associated with K. On the extent of the weight of an automorphy factor for гK, some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for K = ℚ(√5). It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.


1978 ◽  
Vol 19 (2) ◽  
pp. 173-197 ◽  
Author(s):  
Karl-Bernhard Gundlach

It is well known that the number Ak(m) of representations of a positive integer m as the sum of k squares of integers can be expressed in the formwhere Pk(m) is a divisor function, and Rk(m) is a remainder term of smaller order. (1) is a consequence of the fact thatis a modular form for a certain congruence subgroup of the modular group, andwithwhere Ek(z) is an Eisenstein series and is a cusp form (as was first pointed out by Mordell [9]). The result (1) remains true if m is taken to be a totally positive integer from a totally real number field K and Ak(m) is the number of representations of m as the sum of k squares of integers from K (at least for 2|k, k>2, and for those cases with 2+k which have been investigated). then are replaced by modular forms for a subgroup of the Hilbert modular group with Fourier expansions of the form (10) (see section 2).


2013 ◽  
Vol 24 (08) ◽  
pp. 1350065 ◽  
Author(s):  
BERNHARD HEIM ◽  
ATSUSHI MURASE

We show certain symmetries for Borcherds lifts on the Hilbert modular group over a real quadratic field. We give two different proofs, the one analytic and the other arithmetic. The latter proof yields an explicit description of the action of Hecke operators on Borcherds lifts.


2021 ◽  
pp. 1-29
Author(s):  
Matthew Stover

The Wiman–Edge pencil is a pencil of genus 6 curves for which the generic member has automorphism group the alternating group [Formula: see text]. There is a unique smooth member, the Wiman sextic, with automorphism group the symmetric group [Formula: see text]. Farb and Looijenga proved that the monodromy of the Wiman–Edge pencil is commensurable with the Hilbert modular group [Formula: see text]. In this note, we give a complete description of the monodromy by congruence conditions modulo 4 and 5. The congruence condition modulo 4 is new, and this answers a question of Farb–Looijenga. We also show that the smooth resolution of the Baily–Borel compactification of the locally symmetric manifold associated with the monodromy is a projective surface of general type. Lastly, we give new information about the image of the period map for the pencil.


Sign in / Sign up

Export Citation Format

Share Document