scholarly journals Neumann to Steklov eigenvalues: asymptotic and monotonicity results

Author(s):  
Pier Domenico Lamberti ◽  
Luigi Provenzano

We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Gusein Sh. Guseinov

Using spectral properties of the Laplace operator and some structural formula for rapidly decreasing functions of the Laplace operator, we offer a novel method to derive explicit formulae for solutions to the Cauchy problem for classical wave equation in arbitrary dimensions. Among them are the well-known d'Alembert, Poisson, and Kirchhoff representation formulae in low space dimensions.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


Author(s):  
Murat Kemal Karacan ◽  
Dae Won Yoon ◽  
Nural Yuksel

AbstractIn this paper, we classify two types ruled surfaces in the three dimensional simply isotropic space I13under the condition ∆xi= λixiwhere ∆ is the Laplace operator with respect to the first fundamental form and λ is a real number. We also give explicit forms of these surfaces.


Sign in / Sign up

Export Citation Format

Share Document