scholarly journals Stochastic maximum principle for optimal control problem of forward and backward system

Author(s):  
Wensheng Xu

AbstractThe maximum principle for optimal control problems of stochastic systems consisting of forward and backward state variables is proved, under the assumption that the diffusion coefficient does not contain the control variable, but the control domain need not be convex.

Author(s):  
Shahla Rasulzade ◽  
◽  

One specific optimal control problem with distributed parameters of the Moskalenko type with a multipoint quality functional is considered. To date, the theory of necessary first-order optimality conditions such as the Pontryagin maximum principle or its consequences has been sufficiently developed for various optimal control problems described by ordinary differential equations, i.e. for optimal control problems with lumped parameters. Many controlled processes are described by various partial differential equations (processes with distributed parameters). Some features are inherent in optimal control problems with distributed parameters, and therefore, when studying the optimal control problem with distributed parameters, in particular, when deriving various necessary optimality conditions, non-trivial difficulties arise. In particular, in the study of cases of degeneracy of the established necessary optimality conditions, fundamental difficulties arise. In the present work, we study one optimal control problem described by a system of first-order partial differential equations with a controlled initial condition under the assumption that the initial function is a solution to the Cauchy problem for ordinary differential equations. The objective function (quality criterion) is multi-point. Therefore, it becomes necessary to introduce an unconventional conjugate equation, not in differential (classical), but in integral form. In the work, using one version of the increment method, using the explicit linearization method of the original system, the necessary optimality condition is proved in the form of an analog of the maximum principle of L.S. Pontryagin. It is known that the maximum principle of L.S. Pontryagin for various optimal control problems is the strongest necessary condition for optimality. But the principle of a maximum of L.S. Pontryagin, being a necessary condition of the first order, often degenerates. Such cases are called special, and the corresponding management, special management. Based on these considerations, in the considered problem, we study the case of degeneration of the maximum principle of L.S. Pontryagin for the problem under consideration. For this purpose, a formula for incrementing the quality functional of the second order is constructed. By introducing auxiliary matrix functions, it was possible to obtain a second-order increment formula that is constructive in nature. The necessary optimality condition for special controls in the sense of the maximum principle of L.S. Pontryagin is proved. The proved necessary optimality conditions are explicit.


2019 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
Carlos Campos ◽  
Cristiana J. Silva ◽  
Delfim F. M. Torres

We provide easy and readable GNU Octave/MATLAB code for the simulation of mathematical models described by ordinary differential equations and for the solution of optimal control problems through Pontryagin’s maximum principle. For that, we consider a normalized HIV/AIDS transmission dynamics model based on the one proposed in our recent contribution (Silva, C.J.; Torres, D.F.M. A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde. Ecol. Complex. 2017, 30, 70–75), given by a system of four ordinary differential equations. An HIV initial value problem is solved numerically using the ode45 GNU Octave function and three standard methods implemented by us in Octave/MATLAB: Euler method and second-order and fourth-order Runge–Kutta methods. Afterwards, a control function is introduced into the normalized HIV model and an optimal control problem is formulated, where the goal is to find the optimal HIV prevention strategy that maximizes the fraction of uninfected HIV individuals with the least HIV new infections and cost associated with the control measures. The optimal control problem is characterized analytically using the Pontryagin Maximum Principle, and the extremals are computed numerically by implementing a forward-backward fourth-order Runge–Kutta method. Complete algorithms, for both uncontrolled initial value and optimal control problems, developed under the free GNU Octave software and compatible with MATLAB are provided along the article.


2009 ◽  
Vol 06 (07) ◽  
pp. 1221-1233 ◽  
Author(s):  
MARÍA BARBERO-LIÑÁN ◽  
MIGUEL C. MUÑOZ-LECANDA

A geometric method is described to characterize the different kinds of extremals in optimal control theory. This comes from the use of a presymplectic constraint algorithm starting from the necessary conditions given by Pontryagin's Maximum Principle. The algorithm must be run twice so as to obtain suitable sets that once projected must be compared. Apart from the design of this general algorithm useful for any optimal control problem, it is shown how to classify the set of extremals and, in particular, how to characterize the strict abnormality. An example of strict abnormal extremal for a particular control-affine system is also given.


Sign in / Sign up

Export Citation Format

Share Document