The Importance of Ecosystem Structure and Function in the Management of Water Quality in India

1979 ◽  
Vol 6 (4) ◽  
pp. 293-296 ◽  
Author(s):  
S. V. Rama Rao ◽  
S. K. Sharma ◽  
V. P. Singh ◽  
L. P. Mall

The term ecosystem integrity may be defined as the maintenance of the community structure and function that is characteristic of a particular locality or habitat. The study of aquatic ecosystem integrity in the rivers and lakes of India holds a bright prospect for the evaluation and management of the quality of our water.

2015 ◽  
Vol 23 (4) ◽  
pp. 443-460 ◽  
Author(s):  
Michael J. Lawrence ◽  
Holly L.J. Stemberger ◽  
Aaron J. Zolderdo ◽  
Daniel P. Struthers ◽  
Steven J. Cooke

War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution, and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and recovery.


2005 ◽  
Vol 53 (1-2) ◽  
pp. 93-108 ◽  
Author(s):  
Bénédicte Pasquer ◽  
Goulven Laruelle ◽  
Sylvie Becquevort ◽  
Véronique Schoemann ◽  
Hugues Goosse ◽  
...  

2010 ◽  
pp. 111-145
Author(s):  
Thomas Lacher ◽  
"Jr Bickham ◽  
Claude Gascon ◽  
Rhys Green ◽  
Robin Moore ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3155
Author(s):  
Shumin Liu ◽  
Fengbin Zhao ◽  
Xin Fang

Phytoplankton and bacterioplankton play a vital role in the structure and function of aquatic ecosystems, and their activity is closely linked to water eutrophication. However, few researchers have considered the temporal and spatial succession of phytoplankton and bacterioplankton, and their responses to environmental factors. The temporal and spatial succession of bacterioplankton and their ecological interaction with phytoplankton and water quality were analyzed using 16S rDNA high-throughput sequencing for their identification, and the functions of bacterioplankton were predicted. The results showed that the dominant classes of bacterioplankton in the Qingcaosha Reservoir were Gammaproteobacteria, Alphaproteobacteria, Actinomycetes, Acidimicrobiia, and Cyanobacteria. In addition, the Shannon diversity indexes were compared, and the results showed significant temporal differences based on monthly averaged value, although no significant spatial difference. The community structure was found to be mainly influenced by phytoplankton density and biomass, dissolved oxygen, and electrical conductivity. The presence of Pseudomonas and Legionella was positively correlated with that of Pseudanabaena sp., and Sphingomonas and Paragonimus with Melosira granulata. On the contrary, the presence of Planctomycetes was negatively correlated with Melosira granulata, as was Deinococcus-Thermus with Cyclotella sp. The relative abundance of denitrifying bacteria decreased from April to December, while the abundance of nitrogen-fixing bacteria increased. This study provides a scientific basis for understanding the ecological interactions between bacteria, algae, and water quality in reservoir ecosystems.


1974 ◽  
pp. 67-111 ◽  
Author(s):  
Ariel Lugo ◽  
Mark Brinson ◽  
Maximo Cerame Vivas ◽  
Clayton Gist ◽  
Robert Inger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document