Ultrastructure and Drug Metabolism in the Developing Guinea Pig

Author(s):  
W. Kuenzig ◽  
M. Boublik ◽  
J.J. Kamm ◽  
J.J. Burns

Unlike a variety of other animal species, such as the rabbit, mouse or rat, the guinea pig has a relatively long gestation period and is a more fully developed animal at birth. Kuenzig et al. reported that drug metabolic activity which increases very slowly during fetal life, increases rapidly after birth. Hepatocytes of a 3-day old neonate metabolize drugs and reduce cytochrome P-450 at a rate comparable to that observed in the adult animal. Moreover the administration of drugs like phenobarbital to pregnant guinea pigs increases the microsomal mixed function oxidase activity already in the fetus.Drug metabolic activity is, generally, localized within the smooth endoplasmic reticulum (SER) of the hepatocyte.

1968 ◽  
Vol 110 (3) ◽  
pp. 407-412 ◽  
Author(s):  
J. L. Holtzman ◽  
T. E. Gram ◽  
P. L. Gigon ◽  
J. R. Gillette

Mixed-function oxidase activity, when measured by the N-demethylation of ethylmorphine or the hydroxylation of aniline, is significantly higher in the smooth hepatic endoplasmic reticulum than in the rough. In the rabbit the smooth membrane/rough membrane activity ratios are significantly greater than 1 whether the activities are expressed per g. of liver (ratio 5), per mg. of protein (ratio 3–5), per μg. of phospholipid phosphorus (ratio 2), per unit of cytochrome P-450 (ratio 1·7) or per unit of NADPH–cytochrome c reductase activity (ratio 2). On the other hand, if the activities are normalized to the NADPH–cytochrome P-450 reductase, there is no significant difference between the rough and smooth membranes. These results suggest that, in the rabbit, the rate-limiting step is the reduction of cytochrome P-450. In contrast, in the rat the difference in activities can be explained by differences in the concentration of cytochrome P-450.


1974 ◽  
Vol 23 (17) ◽  
pp. 2391-2394 ◽  
Author(s):  
Charles L. Litterst ◽  
Edward G. Mimnaugh ◽  
Reginald L. Reagan ◽  
Theodore E. Gram

Sign in / Sign up

Export Citation Format

Share Document